Skip to main content

Biological Means of Arsenic Minimization with Special Reference to Siderophore

  • Chapter
  • First Online:
Arsenic Toxicity: Challenges and Solutions

Abstract

Arsenic (As), a p-block element, is a metalloid common on earth crust in various forms such as arsenopyrite and scorodite. It is known to be present in four oxidation states that are −3, 0, +3 and +5 of which pentavalent and trivalent forms are most toxic. Arsenic in its various forms proves hazardous to environment and all living beings including microbes, animals and plants. In animals, it affects almost all vital organs including liver, kidneys, heart and lungs. As is a known carcinogen too. In plants, As triggers production of reactive oxygen species hence deteriorate development and metabolism of plants. To mitigate these hazardous effects organisms have developed As detoxification mechanisms such as arsenic transforming enzymes, phytochelatins, etc. An emerging discovery in context of arsenic mitigation is utilization of siderophores. Siderophores are secondary metabolites of microorganisms, some plants as well as mammalian cells. These are low molecular weight peptides synthesized via ribosome independent process using non-ribosomal peptide synthetase enzymes. Major function of siderophore was believed to be chelation of iron to make it accessible for siderophore producers. However, studies proved that it can too binds with other heavy metals and metalloids and form thermodynamically stable complex. The complex formation between siderophores and different metals and metalloids including As depends on various physiochemical parameters. This chapter highlights different aspects of arsenic detoxification in organisms with special reference to siderophore utilization in arsenic mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Natasha (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Article  PubMed Central  CAS  Google Scholar 

  • Abedi T, Mojiri A (2020) Arsenic uptake and accumulation mechanisms in rice species. Plan Theory 9(2):129

    CAS  Google Scholar 

  • Adra A, Morin G, Ona-Nguema G, Brest J (2016) Arsenate and arsenite adsorption onto Al-containing ferrihydrites. Implications for arsenic immobilization after neutralization of acid mine drainage. Appl Geochem 64:2–9

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological profile for arsenic TP-92/09. Center for Disease Control, Atlanta

    Google Scholar 

  • Ahmann D, Roberts AL, Krumholz LR, Morel FM (1994) Microbe grows by reducing arsenic. Nature 371:750

    Article  CAS  PubMed  Google Scholar 

  • Akter KF, Owens G, Davey DE, Naidu R (2005) Arsenic speciation and toxicity in biological systems. Rev Environ Contam Toxicol 184:97–149

    CAS  PubMed  Google Scholar 

  • Albrecht-Gary A-M, Crumbliss AL (1998) Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. Met Ions Biol Syst 35:239–327

    CAS  PubMed  Google Scholar 

  • Arceneaux JEL, Boutwell ME, Byers BR (1984) Enhancement of copper toxicity by siderophores in Bacillus megaterium. Antimicrob Agents Chemother 25(5):650–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azeh Engwa G, Ferdinand PU, Nweke Nwalo F, Unachukwu M (2019) Mechanism and health effects of heavy metal toxicity in humans. Poisoning in the modern world - new tricks for an old dog? InTech Open, London. https://doi.org/10.5772/intechopen.82511

    Book  Google Scholar 

  • Bagnyukova TV, Luzhna LI, Pogribny IP, Lushchak VI (2007) Oxidative stress and antioxidant defenses in goldfish liver in response to short-term exposure to arsenite. Environ Mol Mutagen 48:658–665

    Article  CAS  PubMed  Google Scholar 

  • Bakhat HF, Zia Z, Fahad S, Abbas S, Hammad HM, Shahzad AN, Abbas F, Alharby H, Shahid M (2017) Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review. Environ Sci Pollut Res 24:9142–9158

    Article  CAS  Google Scholar 

  • Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, Rensing C, Cervantes C (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9:2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82(8):493–512

    Article  CAS  PubMed  Google Scholar 

  • Bhat SA, Hassan T, Majid S (2019) Heavy metal toxicity and their harmful effects on living organisms – a review. IJMSDR 3:106–122

    Google Scholar 

  • Bhattacharya A, Bhattacharya S (2007) Induction of oxidative stress by arsenic in Clarias batrachus: involvement of peroxisomes. Ecotoxicol Environ Saf 66:178–187

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Gupta K, Debnath S, Ghosh U, Chattopadhyay D, Mukhopadhyay A (2012) Arsenic bioaccumulation in rice and edible plants and subsequent transmission through food chain in Bengal basin: a review of the perspectives for environmental health. Toxicol Environ Chem 94(3):429–441

    Article  CAS  Google Scholar 

  • Biswas BK, Dhar RK, Samanta G, Mandal BK, Chakraborti D, Faruk I, Islam KS, Chowdhury MM, Chowdhury M, Islam A, Roy S (1998) Detailed study report of Samta, one of the arsenic-affected villages of Jessore District, Bangladesh. Curr Sci 74(2):134–145

    Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  CAS  PubMed  Google Scholar 

  • Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GLA, Albrecht-Gary AM (2012) Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(iii), copper(ii) and zinc(ii) complexes. Dalton Trans 41(9):2820–2834

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 11(5):1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Brickman TJ, Armstrong SK (2007) Impact of alcaligin siderophore utilization on in vivo growth of Bordetella pertussis. Infect Immun 75(11):5305–5312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkel J, Khan MH, Kraemer A (2009) A systematic review of arsenic exposure and its social and mental health effects with special reference to Bangladesh. Int J Environ Res 6(5):1609–1619

    Google Scholar 

  • Brown E, Mengmeng Z, Taotao F, Juanli W, Junbo N (2018) Mechanisms of bacterial degradation of arsenic. Indian J Microbiol Res 5(4):436–441

    Google Scholar 

  • Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177(4):981–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, Lee JS, Thomas DJ, Thompson C, Tokar EJ, Waalkes MP, Birnbaum LS, Suk WA (2016) Arsenic and environmental health: state of the science and future research opportunities. Environ Health Perspect 124(7):890–899

    Article  CAS  PubMed  Google Scholar 

  • Cass ME, Garrett TM, Raymond KN (1989) The salicylate mode of bonding in protonated ferric enterobactin analogues. J Am Chem Soc 111:1677–1682

    Article  CAS  Google Scholar 

  • Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C, Canzi E, Andreoni V (2010) Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 33(3):154–164

    Article  CAS  PubMed  Google Scholar 

  • Ceci A, Spinelli V, Massimi L, Canepari S, Persiani AM (2020) Fungi and arsenic: tolerance and bioaccumulation by soil saprotrophic species. Appl Sci 10:3218

    Article  CAS  Google Scholar 

  • Chandrakar V, Naithani SC, Keshavkant S (2016) Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: a review. Biologia 71:367–377

    Article  CAS  Google Scholar 

  • Chang LW, Magos L, Suzuki T (1996) Toxicology of metals. CRC Press, Boca Raton

    Google Scholar 

  • Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP (2012) The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Boil 8(8):731–736

    Article  CAS  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Persoh D (2009) Multi-tasking phytochelatin synthases. Plant Sci 177:266–271

    Article  CAS  Google Scholar 

  • Cortese MS, Paszczynski A, Lewis TA, Sebat JL, Borek V, Crawford RL (2002) Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. BioMetals 15(2):103–120

    Article  CAS  PubMed  Google Scholar 

  • Cox CD, Rinehart KL Jr, Moore ML, Cook JC Jr (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 78:4256–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Barooah M (2018) Characterization of siderophore producing arsenic-resistant Staphylococcus sp. strain TA6 isolated from contaminated groundwater of Jorhat, Assam and its possible role in arsenic geocycle. BMC Microbiol 18(1):104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das D, Chatterjee A, Samanta G, Mandal B, Chowdhury RT, Samanta G, Chowdhury PP, Chanda C, Basu G, Lodh D, Dhar RK, Das D, Saha KC, Chakraborti D (1994) Arsenic contamination in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world. Analyst 119:168N–175N

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci U S A 103(14):5413–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhungana S, Crumbliss AL (2005) Coordination chemistry and redox processes in siderophore-mediated iron transport. Geomicrobiol J 22(3–4):87–98

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S, Trivedi PK, Pandey V, Tripathi RD (2016) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem 99:86–96

    Article  CAS  PubMed  Google Scholar 

  • Dolphen R, Thiravetyan P (2019) Chemosphere reducing arsenic in rice grains by leonardite and arsenic e resistant endophytic bacteria. Chemosphere 223:448–454

    Article  CAS  PubMed  Google Scholar 

  • Dopp E, Kligerman AD, Diaz-Bone RA (2010) Organoarsenicals. Uptake, metabolism, and toxicity. Met Ions Life Sci 7:231–265

    CAS  PubMed  Google Scholar 

  • Drewniak L, Styczek A, Majder-lopatka M, Sklodowska A (2008) Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ Pollut 156(3):1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Duffus JH (2002) Heavy metals—a meaningless term? Pure Appl Chem 74(5):793–807

    Article  CAS  Google Scholar 

  • Dunivin TK, Miller J, Shade A (2018) Taxonomically-linked growth phenotypes during arsenic stress among arsenic resistant bacteria isolated from soils overlying the Centralia coal seam fire. PLoS One 13:e0191893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunivin TK, Yeh SY, Shade A (2019) A global survey of arsenic-related genes in soil microbiomes. BMC Biol 17(1):17

    Article  CAS  Google Scholar 

  • Florea A-M, Dopp E, Obe G, Rettenmeier AW (2004) Genotoxicity of organometallic species. In: Hirner AV, Emons H (eds) Organic metal and metalloid species in the environment: analysis, distribution, processes and toxicological evaluation. Springer-Verlag, Heidelberg, pp 205–219

    Chapter  Google Scholar 

  • Freisinger E (2009) Metallothioneins in plants. Met Ions Life Sci 5:107–153

    CAS  Google Scholar 

  • Ghosh P, Rathinasabapathi B, Teplitski M, Ma LQ (2015) Bacterial ability in AsIII oxidation and AsV reduction: relation to arsenic tolerance, P uptake, and siderophore production. Chemosphere 138:995–1000

    Article  CAS  PubMed  Google Scholar 

  • Green HH (1918) Isolation and description of a bacterium causing oxidation of arsenite to arsenate in cattle-dipping baths. Rep Dir Vet Res S Afr 6:593–599

    Google Scholar 

  • Hamelink JL, Landrum PF, Harold BL, William BH (1994) Bioavailability: physical, chemical, and biological interactions. In: Hau J, Van Hoosier Jr GL (eds) Handbook of laboratory animal science. CRC Press Inc., Boca Raton

    Google Scholar 

  • Harrington JM, Parker DL, Bargar JR, Jarzecki AA, Tebo BM, Sposito G, Duckworth OW (2012) Structural dependence of Mn complexation by siderophores: donor group dependence on complex stability and reactivity. Geochim Cosmochim Acta 88:106–119

    Article  CAS  Google Scholar 

  • Hedges RW, Baumberg S (1973) Resistance to arsenic compounds conferred by a plasmid transmissible between strains of Escherichia coli. J Bacteriol 115(1):459–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson JP, Crowley JR, Pinkner JS, Walker JN, Tsukayama P, Stamm WE, Hootan TM, Hultgren SJ (2009) Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog 5(2):e1000305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hersman LE (2000) The role of siderophores in iron oxide dis- solution. In: Lovley DR (ed) Environmental microbe – metal interactions. ASM, Washington, DC, pp 145–157

    Google Scholar 

  • Hou Z, Raymond KN, O’Sullivan B, Esker TW, Nishio T (1998) A preorganized siderophore: thermodynamic and structural characterization of alcaligin and bisucaberin, microbial macrocyclic dihydroxamate chelating agents. Inorg Chem 37(26):6630–6637

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Li H, Rensing C, Zhao K, Johnstone L, Wang GJ (2012) Genome sequence of the facultative anaerobic arsenite-oxidizing and nitrate-reducing bacterium Acidovorax sp strain NO1. J Bacteriol 194:1635–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol Biochem 37:2319–2322

    Article  CAS  Google Scholar 

  • Jeong S, Sun H, Nam K (2014) Enhanced uptake and translocation of arsenic in Cretan brake fern (Pteris cretica L.) through siderophorearsenic complex formation with an aid of rhizospheric bacterial activity. J Hazard Mater 280:536–543

    Article  CAS  PubMed  Google Scholar 

  • Ji G, Silver S (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone TC, Nolan EM (2015) Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44(14):6320–6339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator – Siderophore: a review. Microbiol Res 212–213:103–111

    Article  PubMed  CAS  Google Scholar 

  • Khan A, Gupta A, Singh P, Mishra AK, Ranjan RK, Srivastava A (2020) Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis. Int Microbiol 23:277–286

    Article  CAS  PubMed  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66(1):3–18

    Article  CAS  Google Scholar 

  • Kulp TR, Hoeft SE, Asao M, Madigan MT, Hollibaugh JT, Fisher JC, Stolz JF, Culbertson CW, Mil LG (2008) Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321:967–970

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Khan A, Singh P, Dwivedi SK, Ojha KK, Srivastava A (2019) Mitigation of As toxicity in wheat by exogenous application of hydroxamate siderophore of Aspergillus origin. Acta Physiol Plant 41(107):1–29

    CAS  Google Scholar 

  • Lampis S, Santi C, Ciurli A, Andreolli M, Vallini G (2015) Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Front Plant Sci 6:80

    Article  PubMed  PubMed Central  Google Scholar 

  • LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163:1–9

    Article  CAS  PubMed  Google Scholar 

  • Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146–1169

    Article  CAS  PubMed  Google Scholar 

  • Li F, Qiu ZZ, Zhang JD (2017) Investigation, pollution mapping and simulative leakage health risk assessment for heavy metals and metalloids in groundwater from a typical brownfield, middle China. Int J Environ Res Pub 14(7):768

    Article  CAS  Google Scholar 

  • Liebeke M, Garcia-Perez I, Anderson CJ, Lawlor AJ, Bennett MH, Morris CA, Kille P, Svendsen C, Spurgeon DJ, Bundy JG (2013) Earthworms produce phytochelatins in response to arsenic. PLoS ONE 8(11):e81271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z (2010) Roles of vertebrate aquaglyceroporins in arsenic transport and detoxification. Adv Exp Med Biol 679:71–81

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, Meharg AA, Charnock JM, Smith FA (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40(18):5730–5736

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Maizel D, Blum JS, Ferrero MA, Utturkar SM, Brown SD, Rosen BP, Oremland RS (2016) Characterization of the extremely arsenic-resistant Brevibacterium linens strain AE038-8 isolated from contaminated groundwater in Tucumán, Argentina. Int Biodeterior Biodegradation 107:147–153

    Article  CAS  Google Scholar 

  • Maki T, Hasegawa H, Watarai H, Ueda K (2004) Classification for dimethylarsenate-decomposing bacteria using a restrict fragment length polymorphism analysis of 16S rRNA genes. Anal Sci 20:61–68

    Article  CAS  PubMed  Google Scholar 

  • Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A (2018) Effective rhizoinoculation and biofilmformation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610–611:1239–1250

    Article  PubMed  CAS  Google Scholar 

  • Mandal AK, Obi Reddy GP, Ravisankar T (2011) Digital database of salt affected soils in India using geographic information system. JSSWQ 3(1):16–29

    Google Scholar 

  • Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79:4813–4814

    Article  CAS  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25(8):1414–1419

    Article  CAS  Google Scholar 

  • Matzanke BF, Müller GI, Raymond KN (1984) Hydroxamate siderophore mediated iron uptake in E. coli: stereospecific recognition of ferric rhodotorulic acid (1). Biochem Biophys Res 121(3):922–930

    Article  CAS  Google Scholar 

  • McKnight DM, Morel FMM (1980) Copper complexation by siderophores from filamentous blue green algae. Limnol Oceanogr 25(1):62–71

    Article  CAS  Google Scholar 

  • Meharg AA (2002) Variation in arsenic accumulation — hyperaccumulation in ferns and their allies. New Phytol 157:25–31

    Article  Google Scholar 

  • Mesa V, Navazas A, González-Gil R, González A, Weyens N, Lauga B, Gallego JLR, Sánchez J, Peláez AI (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83:e03411–e03416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalke K, Wickenheiser EB, Mehring M, Hirner AV, Hensel R (2000) Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 24:142–163

    PubMed  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Bhattacharjee H, Rosen BP (2014) Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta 1840:1583–1591

    Article  CAS  PubMed  Google Scholar 

  • Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212

    Article  CAS  Google Scholar 

  • Namiranian S, Richardson DJ, Russell DA, Sodeau JR (1997) Excited state properties of the siderophore pyochelin and its complex with zinc ions. Photochem Photobiol 65(5):777–782

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Niazi NK, Bibi I, Shahid M, Ok YS, Burton ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A (2018) Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environ Pollut 232:31–41

    Article  CAS  PubMed  Google Scholar 

  • Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud M-C (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Hoeft SE, Santini JA, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozturk F, Duman F, Leblebici Z, Temizgul R (2010) Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ Exp Bot 69:167–174

    Article  CAS  Google Scholar 

  • Paez-Espino D, Tamames J, de Lorenzo V, Canovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130

    Article  CAS  PubMed  Google Scholar 

  • Palmgren M, Engström K, Hallström BM, Wahlberg K, Søndergaard DA, Säll T, Vahter M, Broberg K (2017) AS3MT-mediated tolerance to arsenic evolved by multiple independent horizontal gene transfers from bacteria to eukaryotes. PLoS ONE 12(4):e0175422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mater 287:384–391

    Google Scholar 

  • Pandey S, Rai R, Rai LC (2015) Biochemical and molecular basis of arsenic toxicity and tolerance in microbes and plants. In: Handbook of arsenic toxicology. Elsevier, Amsterdam, pp 627–674

    Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    Article  CAS  Google Scholar 

  • Prithivirajsingh S, Mishra SK, Mahadevan A (2001) Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Mol Biol Rep 28(2):63–72

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arseniteS-adenosylmethionine methyltransferase. PNAS 103(7):2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MA, Hogan B, Duncan E, Doyle C, Krassoi R, Rahman MM, Naidu R, Lim RP, Maher W, Hassler C (2014) Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicol Environ Saf 106:126–135

    Article  CAS  PubMed  Google Scholar 

  • Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. PNAS 100(7):3584–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond KN, Allred BE, Sia AK (2015) Coordination chemistry of microbial iron transport. Acc Chem Res 48(9):2496–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retamal-morales G, Mehnert M, Schwabe R, Tischler D, Zapata C, Chávez R, Schlömann M, Levicán G (2018) Detection of arsenic-binding siderophores in arsenic-tolerating Actinobacteria by a modified CAS assay. Ecotoxicol Environ Saf 157:176–181

    Article  CAS  PubMed  Google Scholar 

  • Richey C, Chovanec P, Hoeft SE, Oremland RS, Basu P, Stolz JF (2009) Respiratory arsenate reductase as a bi-directional enzyme. Biochem Biophys Res Commun 382:298–302

    Article  CAS  PubMed  Google Scholar 

  • Rosas-Castor J, Guzmán-Mar J, Hernández-Ramírez A, Garza-González M, Hinojosa-Reyes L (2014) Arsenic accumulation in maize crop (Zea mays): a review. Sci Total Environ 488:176–187

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein R, Peschel A, Wieland B, Götz F (1992) Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J Bacteriol 174(11):3676–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed-Ur-Rahman K, Hui M, Kayani N, Tang S-I (2020) Diversity and versatile functions of metallothioneins produced by plants: a review. Pedosphere 30(5):577–588

    Article  Google Scholar 

  • Satyapal GK, Mishra SK, Srivastava A, Ranjan RK, Prakash K, Haque R, Kumar N (2018) Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnol Rep 17:117–125

    Article  Google Scholar 

  • Sebastian A, Prasad MNV (2014) Cadmium minimization in rice. A review. Agron Sustain Dev 34:155–173

    Article  CAS  Google Scholar 

  • Sebat JL, Paszczynski AJ, Cortese MS, Crawford RL (2001) Antimicrobial properties of pyridine-2,6-dithiocarboxylic acid, a metal chelator produced by Pseudomonas spp. Appl Environ Microbiol 67:3934–3942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219:1–12

    Article  PubMed  CAS  Google Scholar 

  • Shariatpanahi M, Anderson AC, Abdelghani AA, Englande AJ, Hughes J, Wilkinson RF (1981) Biotransformation of the pesticide sodium arsenate. J Environ Sci Health B 16:35–47

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Bhardwaj R, Handa N, Gautam V, Kohli SK, Bali S, Kaur P, Thukral AK, Arora S, Ohri A, Vig AP (2016) Responses of phytochelatins and metallothioneins in alleviation of heavy metal stress in plants. Plant Metal Interact 2016:263–283

    Article  Google Scholar 

  • Shri M, Singh PK, Kidwai M, Gautam N, Dubey S, Verma G, Chakrabarty D (2019) Recent advances in arsenic metabolism in plants: current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in rice. Metallomics 11:519–532

    Article  CAS  PubMed  Google Scholar 

  • Signes-Pastor A, Burló F, Mitra K (2007) Carbonell-Barrachina, A. Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma 137:504–510

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Verma P, Dubey SK (2014) Marine vibrios also possess ars operon: molecular characterization of four arsinic resistant vibrios from Goa, India. Int J Pharm Bio Sci 5(3):B251–B259

    Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, Dixit S, Singh PK, Dwivedi S, Trivedi PK, Pandey V (2017) A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem 115:163–173

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Sinha P, Sharma YK (2017) Status of photosynthetic pigments, lipid peroxidation and anti-oxidative enzymes in Vigna mungo in presence of arsenic. J Plant Nutr 40:298–306

    Article  CAS  Google Scholar 

  • Steinbrueck A, Sedgwick AC, Brewster JT, Yan K-C, Shang Y, Knoll DM, Vargas-Zúñiga GI, He X-P, Tian H, Sessler JL (2020) Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents. Chem Soc Rev 49(12):3726–3747

    Article  CAS  PubMed  Google Scholar 

  • Stern BR (2010) Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. Toxicol Environ Health A 73(2):114–127

    Article  CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Sierra-Alvarez R, Milner L, Field JA (2010) Anaerobic oxidation of arsenite linked to chlorate reduction. Appl Environ Microbiol 76:6804–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susan A, Rajendran K, Sathyasivam K, Krishnan UM (2019) An overview of plant-based interventions to ameliorate arsenic toxicity. Biomed Pharmacother 109:838–852

    Article  CAS  PubMed  Google Scholar 

  • Talukdar D (2017) Balancing roles of reactive oxygen species in plants’ response to metalloid exposure. In: Singh VP, Singh S, Tripathi DK, Prasad SP (eds) Reactive oxygen species in plants: boon or bane - revisiting the role of ROS. Wiley, Hoboken

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Experientia 101:133–164

    PubMed  Google Scholar 

  • Thomas DJ, Styblo M, Lin S (2001) The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol 176:127–144

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chatterjee S, Chakrabarty D, Trivedi PK (2012) Arsenomics: omics of arsenic metabolism in plants. Front Physiol 3:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Srivastava S, Chauhan R, Awasthi S, Mishra S, Dwivedi S, Tripathi P, Kalra A (2017) Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum). Environ Pollut 223:137–145

    Article  CAS  PubMed  Google Scholar 

  • Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yen S (1968) Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40:453–463

    CAS  PubMed  Google Scholar 

  • Tseng CF, Burger A, Mislin GLA, Schalk IJ, Yu SSF, Chan SI, Abdallah MA (2006) Bacterial siderophores: The solution stoichiometry and coordination of the Fe (III) complexes of pyochelin and related compounds. J Biol Inorg Chem 11(4):419–432

    Article  CAS  PubMed  Google Scholar 

  • Valles-Aragón MC, Olmos-Márquez MA, Llorens E, Alarcón-Herrera MT (2013) Redox potential and pH behavior effect on arsenic removal from water in a constructed wetland mesocosm. Environ Prog Sustain Energy 33:1332–1339. https://doi.org/10.1002/ep.11910

    Article  CAS  Google Scholar 

  • Ventura-Lima J, Fattorini D, Regoli F, Monserrat JM (2009a) Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: bioaccumulation, biotransformation and biological responses. Environ Pollut 157:3479–3484

    Article  CAS  PubMed  Google Scholar 

  • Ventura-Lima J, Castro MR, Acosta D, Fattorini D, Regoli F, Carvalho LM, Bohrer D, Geracitano LA, Barros DM, Silva RS, Bonan CD, Bogo MR, Monserrat JM (2009b) Effects of arsenic (As) exposure on the antioxidant status of gills of the zebrafish Danio rerio (Cypridinae) Comp. Biochem Physiol 149C:538–543

    CAS  Google Scholar 

  • Ventura-Lima J, Bogo MR, Monserrat JM (2011) Arsenic toxicity in mammals and aquatic animals: a comparative biochemical approach. Ecotoxicol Environ Saf 74(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Shi X (2001) Molecular mechanisms of metal toxicity and carcinogenesis. Mol. Cell Biochem 222:3–9

    Article  CAS  Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasSarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Waters DLE, Holton TA, Ablett EM, Lee LS, Henry RJ (2005) cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genomics 5:40–58

    Article  CAS  PubMed  Google Scholar 

  • WHO/FAO/IAEA (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  • Wu J, Rosen BP (1993) The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol Microbiol 8(3):615–623

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157(1):498–508. https://doi.org/10.1104/pp.111.178921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao JG (1997) 96% well water is underintakable. Asia Arsenic Netw Newslett 2:7–9

    Google Scholar 

  • Yamazaki S, Ueda Y, Mukai A, Ochiai K, Matoh T (2018) Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance. Plant Direct 2(1):e00034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang H-C, Rosen BP (2016) New mechanisms of bacterial arsenic resistance. Biom J 39(1):5–13

    Google Scholar 

  • Yedjou CG, Tchounwou PB (2006) Oxidative stress in human leukemia cells (HL-60), human liver carcinoma cells (HepG2) and human Jerkat-T cells exposed to arsenic trioxide. Metal Ions Biol Med 9:298–303

    CAS  Google Scholar 

  • Yedjou GC, Tchounwou PB (2007) In vitro cytotoxic and genotoxic effects of arsenic trioxide on human leukemia cells using the MTT and alkaline single cell gel electrophoresis (comet) assays. Mol Cell Biochem 301:123–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin XX, Chen J, Qin J, Sun GX, Rosen BP, Zhu YG (2011a) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin XX, Zhang YY, Yang J, Zhu YG (2011b) Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila. Environ Pollut 159:837–840

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga M, Cai Y, Rosen BP (2011) Demethylation of methylarsonic acid by a microbial community. Environ Microbiol 13:1205–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang Y, Lou Z, Dong J (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31

    Article  CAS  Google Scholar 

  • Zhao C, Zhang Y, Chan Z, Chen S, Yang S (2015) Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009. Front Microbiol 6:986

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu YG, Xue XM, Kappler A, Rosen BP, Meharg AA (2017) Linking genes to microbial biogeochemical cycling: lessons from arsenic. Environ Sci Technol 51:7326–7339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Pratika Singh and Azmi Khan are thankful to UGC, New Delhi for financial support in the form of fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Khan, A., Srivastava, A. (2021). Biological Means of Arsenic Minimization with Special Reference to Siderophore. In: Kumar, N. (eds) Arsenic Toxicity: Challenges and Solutions. Springer, Singapore. https://doi.org/10.1007/978-981-33-6068-6_10

Download citation

Publish with us

Policies and ethics