Skip to main content

Nanoparticles for Anticancer Therapy

  • Chapter
  • First Online:
Nanomaterials and Nanotechnology

Abstract

In the last decades, scientists around the world have been aiming their efforts to elucidate the unique properties of biocompatible nanoparticles and how to use these materials to develop new approaches for cancer treatments. Once discovered that nanoparticles can spontaneously leave the bloodstream in neoplastic sites and passively accumulate in tumor’s interstitium, avoiding their accumulation in normal tissues, researchers have been studying a variety of nanoparticles as drug delivery systems designed to specifically release therapeutic molecules in tumor tissues to increase the load of drugs in the tumors and to reduce the side effects caused by drugs uptake by normal cells. Lately, many types of nanomaterials with potential for application in cancer therapy are under investigation including the mesoporous silica classes such as SBA and MCM families, the calcium phosphates materials such as hydroxyapatite, the nanotubes such as carbon and boron nitride nanotubes, the magnetic nanostructures such as magnetite and the metallic materials such as gold nanoparticles. Recent studies have shown that nanoparticles are promising carriers for drug and gene delivery and also for biomedical imaging due to their large surface area, uniform pore size distribution and high pore volume that allow high drug loads, as well as good biocompatibility. Hence, these nanoparticles can act in pharmacokinetic release profiles, leading to increased bioavailability, target delivery and thereby enhanced therapeutic efficacy. To act as drug delivery systems, nanoparticles must show long-term circulation in the bloodstream, avoiding being recognized and captured by the macrophages. The functionalization of nanoparticles can make them stealthy to immune system and can also provide active targeting to specific tumor cells, considering that some organic molecules can inhibit the opsonization on nanoparticle surfaces, and other molecules can bind as specific ligands in some receptors that are overexpressed in some neoplastic cells. The receptor–ligand-mediated endocytose can be induced by the functionalization of nanoparticle surfaces with these ligands, allowing a more specific delivery of therapeutic agents directly inside the cells. The functionalization process can also tune the surface charge to increase the colloidal stability of the nanomaterials. By radiolabeling the nanostructures, it is also possible to provide theranostic properties to these materials, allowing to make the diagnosis simultaneously to the treatment. Finally, it is even possible to conjugate all these properties in on nanostructured platform consisting a multifunctional nanosystem, conceding the application of multiple concomitant diagnostic and therapeutic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arriagada FJ, Osseo-Asare K (1992) Phase and dispersion stability effects in the synthesis of silica nanoparticles in a non-ionic reverse microemulsion. Colloids Surf 69:105–115

    Article  CAS  Google Scholar 

  • Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, Hanna TN, Liu J, Phillips B, Carter MB, Carroll NJ, Jiang X, Dunphy DR, Willman CL, Petsev DN, Evans DG, Parikh AN, Chackerian B, Wharton W, Peabody DS, Brinker CJ (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10:389–397

    Article  CAS  Google Scholar 

  • Azevedo RCS, Sousa RG, Macedo WAA, Sousa EMB (2014) Combining mesoporous silica–magnetite and thermally-sensitive polymers for applications in hyperthermia. J Sol Gel Sci Technol 72:208–218

    Article  CAS  Google Scholar 

  • Bailey DL, Humm JL, Todd-Pokropek A, van Aswegen A (eds) (2014) Nuclear medicine physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–282

    Article  CAS  Google Scholar 

  • Barth RF, Mi P, Yang W (2018) Boron delivery agents for neutron capture therapy of cancer. Cancer Commun 38:1–15

    Google Scholar 

  • Beckert MB, Gallego S, Ding Y, Elder E, Nadler JH (2016) Medical imaging scintillators from glass-ceramics using mixed rare-earth halides. Opt Mater (Amst) 60:513–520

    Article  CAS  Google Scholar 

  • Benezra M, Penate-medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S, Wolchok J, Larson SM, Wiesner U, Bradbury MS (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma find the latest version: technical advance multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121:2768–2780. https://doi.org/10.1172/JCI45600

  • Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335–340

    Google Scholar 

  • Brollo MEF, Orozco-Henao JM, López-Ruiz R, Muraca D, Dias CSB, Pirota KR, Knobel M (2016) Magnetic hyperthermia in brick-like Ag@Fe3O4 core–shell nanoparticles. J Magn Magn Mater 397:20–27

    Article  CAS  Google Scholar 

  • Cai L, Guinn AS, Wang S (2011) Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation. Acta Biomater 7:2185–2199

    Article  CAS  Google Scholar 

  • Chaturvedi VK, Singh A, Singh VK, Singh MP (2018) Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metab 20:416–429

    Article  CAS  Google Scholar 

  • Chen F, Ehlerding EB, Cai W (2014) Theranostic nanoparticles. J Nucl Med, 1–5

    Google Scholar 

  • Cherukula K, Manickavasagam Lekshmi K, Uthaman S, Cho K, Cho C-S, Park I-K (2016) Multifunctional inorganic nanoparticles: recent progress in thermal therapy and imaging. Nanomaterials 6:76

    Article  CAS  Google Scholar 

  • Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science, 80–

    Google Scholar 

  • Choudhury PS, Gupta M (2018) Differentiated thyroid cancer theranostics: radioiodine and beyond. Br J Radiol 91:20180136

    Article  Google Scholar 

  • Ciofani G, Mattoli V (2016) Boron nitride nanotubes in nanomedicine, 1st edn. William Andrew, Oxford

    Google Scholar 

  • Ciofani G, Genchi GG, Liakos I, Athanassiou A, Dinucci D, Chiellini F, Mattoli V (2012) A simple approach to covalent functionalization of boron nitride nanotubes. J Colloid Interface Sci 374:308–314

    Google Scholar 

  • Ciofani G, Boni A, Calucci L, Forte C, Gozzi A, Mazzolai B, Mattoli V, (2013a) Gd-doped BNNTs as T2-weighted MRI contrast agents. Nanotechnology, 24

    Google Scholar 

  • Ciofani G, Danti S, Genchi GG, Mazzolai B, Mattoli V (2013b) Boron nitride nanotubes: biocompatibility and potential spill-over in nanomedicine. Small 9:1672–1685

    Article  CAS  Google Scholar 

  • Ciofani G, Del Turco S, Rocca A, De Vito G, Cappello V, Yamaguchi M, Li X, Mazzolai B, Basta G, Gemmi M, Piazza V, Golberg D, Mattoli V (2014) Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Nanomedicine 9:773–788

    Article  CAS  Google Scholar 

  • Cipreste MF (2017) NANOBASTÕES DE HIDROXIAPATITA RADIOMARCADOS COMO AGENTES TERANÓSTICOS PARA OSTEOSSARCOMAS E METASTASES ÓSSEAS. Centro de Desenvolvimento da Tecnologia Nuclear

    Google Scholar 

  • Cipreste Marcelo Fernandes, Gonzalez I, da Mata Maria, Martins T, Goes AM, de Almeida Augusto, Macedo W, Barros de Sousa EM (2016a) Attaching folic acid on hydroxyapatite nanorod surfaces: an investigation of the HA–FA interaction. RSC Adv 6:76390–76400

    Article  CAS  Google Scholar 

  • Cipreste Marcelo F, Peres AM, Cotta AAC, Aragón FH, Antunes ADM, Leal AS, Macedo WAA, de Sousa EMB (2016b) Synthesis and characterization of 159 Gd-doped hydroxyapatite nanorods for bioapplications as theranostic systems. Mater Chem Phys 181:301–311

    Article  CAS  Google Scholar 

  • Cole JT, Holland NB (2015) Multifunctional nanoparticles for use in theranostic applications. Drug Deliv Transl Res 5:295–309

    Article  CAS  Google Scholar 

  • da Silva WM, Hilário Ferreira T, de Morais CA, Soares Leal A, Barros Sousa EM (2018a) Samarium doped boron nitride nanotubes. Appl Radiat Isot 131:30–35

    Article  CAS  Google Scholar 

  • da Silva WM, Monteiro GAA, Gastelois PL, de Sousa RG, de Macedo WAA, Sousa EMB (2018b) Efficient sensitive polymer-grafted boron nitride nanotubes by microwave-assisted process. Nano Struct Nano-Objects 15:186–196

    Google Scholar 

  • de Barros ALB, de Oliveira Ferraz KS, Dantas TCS, Andrade GF, Cardoso VN, Sousa EMB De (2015) Synthesis, characterization, and biodistribution studies of 99mTc-labeled SBA-16 mesoporous silica nanoparticles. Mater Sci Eng C 56:181–188

    Article  CAS  Google Scholar 

  • de Freitas LBO, Bravo IJG, de Macedo WAA, de Sousa EMB (2015) Mesoporous silica materials functionalized with folic acid: preparation, characterization and release profile study with methotrexate. J Sol Gel Sci Technol, 186–204

    Google Scholar 

  • de Freitas LBO, de Corgosinho LM, Faria JAQA, dos Santos VM, Resende JM, Leal AS, Gomes DA, de Sousa EMB (2017) Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous Mesoporous Mater 242:271–283

    Google Scholar 

  • de Villiers MM, Aramwit P, Kwon GS (eds) (2009) Nanotechnology in drug delivery. Springer, New York

    Google Scholar 

  • Del Turco S, Ciofani G, Cappello V, Gemmi M, Cervelli T, Saponaro C, Nitti S, Mazzolai B, Basta G, Mattoli V (2013) Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids Surf B Biointerfaces

    Google Scholar 

  • Dorozhkin SV (2015) Calcium orthophosphate bioceramics. Ceram Int 41:13913–13966

    Article  CAS  Google Scholar 

  • dos Apostolos RCR, Andrade GF, da Silva WM, de Assis Gomes D, de Miranda MC, de Sousa EMB (2019) Hybrid polymeric systems of mesoporous silica/hydroxyapatite nanoparticles applied as antitumor drug delivery platform. Int J Appl Ceram Technol, 1836–1849

    Google Scholar 

  • Dvorak H, Senger D, Dvorak A, Harvey V, McDonagh J (1985) Regulation of extravascular coagulation by microvascular permeability. Science(80–):227:1059–1061

    Google Scholar 

  • Emanet M, Şen Ö, Çobandede Z, Çulha M (2015) Interaction of carbohydrate modified boron nitride nanotubes with living cells. Colloids Surf B Biointerfaces 134:440–446

    Article  CAS  Google Scholar 

  • Ferreira TH, Ferreira Soares DC, Costa Moreira LM, Da Silva PRO, Dos Santos RG, De Sousa EMB (2013) Boron nitride nanotubes coated with organic hydrophilic agents: stability and cytocompatibility studies. Mater Sci Eng C 33

    Google Scholar 

  • Ferreira Tiago H, Rocca A, Marino A, Mattoli V, de Sousa EMB, Ciofani G (2015a) Evaluation of the effects of boron nitride nanotubes functionalized with gum arabic on the differentiation of rat mesenchymal stem cells. RSC Adv 5:45431–45438

    Article  CAS  Google Scholar 

  • Ferreira TH, Rocca A, Marino A, Mattoli V, De Sousa EMB, Ciofani G (2015) Evaluation of the effects of boron nitride nanotubes functionalized with gum arabic on the differentiation of rat mesenchymal stem cells. RSC Adv, 5

    Google Scholar 

  • Ferreira THTH, Marino A, Rocca A, Liakos I, Nitti S, Athanassiou A, Mattoli V, Mazzolai B, de Sousa EMBEMB, Ciofani G (2015c) Folate-grafted boron nitride nanotubes: possible exploitation in cancer therapy. Int J Pharm 481:56–63

    Article  CAS  Google Scholar 

  • Ferreira TH, Faria JAQA, Gonzalez IJ, Outon LEF, Macedo WAA, Gomes DA, Sousa EMB (2018) BNNT/Fe3O4 system as an efficient tool for magnetohyperthermia therapy. J Nanosci Nanotechnol 18:6746–6755

    Article  CAS  Google Scholar 

  • Ferro-Flores G, Ocampo-García BE, Santos-Cuevas CL, Morales-Avila E, Azorín-Vega E (2014) Multifunctional radiolabeled nanoparticles for targeted therapy. Curr Med Chem 21:124–138

    Article  CAS  Google Scholar 

  • Gai S, Li C, Yang P, Lin J (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114:2343–2389. https://doi.org/10.1021/cr4001594

  • Gao Z, Zhi C, Bando Y, Golberg D, Serizawa T (2014) Noncovalent functionalization of boron nitride nanotubes in aqueous media opens application roads in nanobiomedicine. Nanobiomedicine 1:7

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  • Genchi GG, Sinibaldi E, Ceseracciu L, Labardi M, Marino A, Marras S, De Simoni G, Mattoli V, Ciofani G (2018) Ultrasound-activated piezoelectric P(VDF-TrFE)/boron nitride nanotube composite films promote differentiation of human SaOS-2 osteoblast-like cells. Nanomed Nanotechnol Biol Med 14:2421–2432

    Article  CAS  Google Scholar 

  • Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993

    Article  CAS  Google Scholar 

  • Gomes MC, Cunha Â, Trindade T, Tomé JPC (2016) The role of surface functionalization of silica nanoparticles for bioimaging. J Innov Opt Health Sci 09:1630005

    Article  CAS  Google Scholar 

  • Guerrini L, Alvarez-Puebla R, Pazos-Perez N (2018) Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel). 11:1154

    Article  CAS  Google Scholar 

  • Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE (2018) Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnol 16:1–10

    Article  CAS  Google Scholar 

  • Hao N, Nie Y, Zhang JXJ (2019) Microfluidics for silica biomaterials synthesis: opportunities and challenges. Biomater Sci 7:2218–2240

    Article  CAS  Google Scholar 

  • He Q, Zhang J, Shi J, Zhu Z, Zhang L, Bu W, Guo L, Chen Y (2010) The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31:1085–1092

    Article  CAS  Google Scholar 

  • Horváth L, Magrez A, Golberg D, Zhi C, Bando Y, Smajda R, Horváth E, Forró L, Schwaller B (2011) In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano 5:3800–3810

    Article  CAS  Google Scholar 

  • Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ (2019) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 15:1–18

    Article  CAS  Google Scholar 

  • Jahangirian H, Ghasemian lemraski E, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y (2017) A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine 12:2957–2978

    Google Scholar 

  • Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263

    Article  CAS  Google Scholar 

  • Jang C, Lee JH, Sahu A, Tae G (2015) The synergistic effect of folate and RGD dual ligand of nanographene oxide on tumor targeting and photothermal therapy in vivo. Nanoscale 7:18584–18594

    Article  CAS  Google Scholar 

  • Kawasaki Y, Freire E (2011) Finding a better path to drug selectivity. Drug Discov Today 16:985–990

    Article  CAS  Google Scholar 

  • Kong L, Mu Z, Yu Y, Zhang L, Hu J (2016) Polyethyleneimine-stabilized hydroxyapatite nanoparticles modified with hyaluronic acid for targeted drug delivery. RSC Adv 6:101790–101799

    Article  CAS  Google Scholar 

  • Koziorowski J, Stanciu A, Gomez-Vallejo V, Llop J (2017) Radiolabeled nanoparticles for cancer diagnosis and therapy. Anticancer Agents Med Chem 17:333–354

    Article  CAS  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Large DE, Soucy JR, Hebert J, Auguste DT (2019) Advances in receptor-mediated, tumor-targeted drug delivery. Adv Ther 2:1800091

    Article  Google Scholar 

  • Li Z (2017) How can we fine-tune nanoparticles to improve drug delivery? Ther Deliv 8:597–600

    Article  CAS  Google Scholar 

  • Li W, Xie X, Wu T, Lin H, Luo L, Yang H, Li J, Xin Y, Lin X, Chen Y (2019) Loading Auristatin PE onto boron nitride nanotubes and their effects on the apoptosis of Hep G2 cells. Colloids Surf B Biointerfaces 181:305–314

    Article  CAS  Google Scholar 

  • Louguet S, Rousseau B, Epherre R, Guidolin N, Goglio G, Mornet S, Duguet E, Lecommandoux S, Schatz C (2012) Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release. Polym Chem 3:1408

    Article  CAS  Google Scholar 

  • Ma Z, Wan H, Wang W, Zhang X, Uno T, Yang Q, Yue J, Gao H, Zhong Y, Tian Y, Sun Q, Liang Y, Dai H (2019) A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Res 12:273–279

    Article  CAS  Google Scholar 

  • Mak TW, Saunders ME (2005) The immune response: basic and clinical principles, 1st edn. Academic Press

    Google Scholar 

  • Mamaeva V, Sahlgren C, Lindén M (2013) Mesoporous silica nanoparticles in medicine-Recent advances. Adv Drug Deliv Rev 65:689–702

    Article  CAS  Google Scholar 

  • Matson ML, Wilson LJ (2010) Nanotechnology and MRI contrast enhancement. Future Med, Chem, p 2

    Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemothrapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  • Mccready R (2016) A history of radionuclide studies in the UK. Springer International Publishing, Cham

    Google Scholar 

  • Menichetti L, Marchi D De, Calucci L, Ciofani G, Menciassi A, Forte C (2011) Boron nitride nanotubes for boron neutron capture therapy as contrast agents in magnetic resonance imaging at 3 T. Appl Radiat Isot 69:1725–1727

    Article  CAS  Google Scholar 

  • Mi P, Kokuryo D, Cabral H, Kumagai M, Nomoto T, Aoki I, Terada Y, Kishimura A, Nishiyama N, Kataoka K (2014) Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors. J Control Release 174:63–71

    Article  CAS  Google Scholar 

  • Mohammad NF, Othman R, Yee-Yeoh F (2014) Nanoporous hydroxyapatite preparation methods for drug delivery applications. Rev Adv Mater Sci 38:138–147

    CAS  Google Scholar 

  • Mokoena PP, Chithambo ML, Kumar V, Swart HC, Ntwaeaborwa OM (2015) Thermoluminescence of calcium phosphate co-doped with gadolinium and praseodymium. Radiat Meas 77:26–33

    Article  CAS  Google Scholar 

  • Monteiro GAA, da Silva WM, de Sousa RG, de Sousa EMB (2019) SBA-15/P[(N-ipaam)-co-(MAA)] thermo and pH-sensitive hybrid systems and their methotrexate (MTX) incorporation and release studies. J Drug Deliv Sci Technol 52:895–904

    Article  CAS  Google Scholar 

  • Muñoz B, Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regí M (2003) MCM-41 organic modification as drug delivery rate regulator. Chem Mater 15:500–503

    Article  CAS  Google Scholar 

  • Ngoune R, Peters A, von Elverfeldt D, Winkler K, Pütz G (2016) Accumulating nanoparticles by EPR: A route of no return. J Control Release 238:58–70

    Article  CAS  Google Scholar 

  • Nhavene E, Andrade G, Faria J, Gomes D, Sousa E (2018) Biodegradable polymers grafted onto multifunctional mesoporous silica nanoparticles for gene delivery. Chem Engineering 2:24

    Google Scholar 

  • Özlem Ş, Çobandede Z, Emanet M, Faruk Ö, Çulha M (2017) BBA—General Subjects Boron nitride nanotubes for gene silencing

    Google Scholar 

  • Pakdel A, Zhi C, Bando Y, Nakayama T, Golberg D (2011) Boron nitride nanosheet coatings with controllable water repellency. ACS Nano 5:6507–6515

    Article  CAS  Google Scholar 

  • Palazzo B, Iafisco M, Laforgia M, Margiotta N, Natile G, Bianchi CL, Walsh D, Mann S, Roveri N (2007) Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 17:2180–2188

    Article  CAS  Google Scholar 

  • Park K (2014) Controlled drug delivery systems: past forward and future back. J Control Release 190:3–8

    Article  CAS  Google Scholar 

  • Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol Biol. Med. 8:147–166

    Article  CAS  Google Scholar 

  • Patidar AK, Patidar P, Tandel TS, Mobiya AK, Selvam G, Jeyakandan M (2010) Current trends in nuclear pharmacy practice. Int J Pharm Sci Rev Res 5:145–150

    Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin H-S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71

    Article  CAS  Google Scholar 

  • Patton DD (2003) The birth of nuclear medicine instrumentation: Blumgart and Yens, 1925. J Nucl Med 44:1362–1365

    Google Scholar 

  • Raffa V, Riggio C, Smith MW, Jordan KC, Cao W, Cuschieri A (2012) BNNT-mediated irreversible electroporation: its potential on cancer cells. Technol Cancer Res Treat 11:459–465

    Article  CAS  Google Scholar 

  • Rámila A, Muñoz B, Pérez-Pariente J, Vallet-Regí M (2003) Mesoporous MCM-41 as drug host system. J Sol Gel Sci Technol 26:1199–1202

    Google Scholar 

  • Ringhieri P, Mannucci S, Conti G, Nicolato E, Fracasso G, Marzola P, Morelli G, Accardo A (2017) Liposomes derivatized with multimeric copies of KCCYS lpeptide as targeting agents for HER-2-overexpressing tumor cells. Int J Nanomed 12:501–514

    Article  CAS  Google Scholar 

  • Rocca A, Marino A, Del Turco S, Cappello V, Parlanti P, Pellegrino M, Golberg D, Mattoli V, Ciofani G (2016) Pectin-coated boron nitride nanotubes: in vitro cyto-/immune-compatibility on RAW 264.7 macrophages. Biochim Biophys Acta Gen Subj 1860:775–784

    Article  CAS  Google Scholar 

  • Rosenholm J, Mamaeva V (2017) Nanoparticles in targeted cancer therapy : Mesoporous silica nanoparticles entering preclinical development. Review, 111–120

    Google Scholar 

  • Sadat-Shojai M, Khorasani M-T, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621

    Article  CAS  Google Scholar 

  • Silva WM, Ribeiro H, Seara LM, Calado HD, Ferlauto AS, Paniago RM, Leite CF, Silva GG (2012) Surface properties of oxidized and aminated multi-walled carbonnanotubes. J Braz Chem Soc 23(6):1078e1086.

    Google Scholar 

  • Simberg D, Duza T, Park JH, Essler M, Pilch J, Zhang L, Derfus AM, Yang M, Hoffman RM, Bhatia S, Sailor MJ, Ruoslahti E (2007) Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci 104:932–936

    Article  CAS  Google Scholar 

  • Simovic S, Ghouchi-Eskandar N, Moom Sinn A, Losic DA, Prestidge C (2011) Silica materials in drug delivery applications. Curr Drug Discov Technol 8:250–268

    Google Scholar 

  • Soares DCF, Ferreira TH, Ferreira CDA, Cardoso VN, De Sousa EMB (2012) Boron nitride nanotubes radiolabeled with 99mTc: preparation, physicochemical characterization, biodistribution study, and scintigraphic imaging in Swiss mice. Int J Pharm 423:489–495

    Article  CAS  Google Scholar 

  • Souza KC, Mohallem NDS, Sousa EMB (2010) Mesoporous silica-magnetite nanocomposite: facile synthesis route for application in hyperthermia. J Sol Gel Sci Technol 53:418–427

    Article  CAS  Google Scholar 

  • Stahl P, Schwartz AL (1986) Receptor-mediated Endocytosis. TJ Clin Invest 77:657–662

    Article  CAS  Google Scholar 

  • Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic-organic mesoporous silicates—nanoscopic reactors coming of age. Adv Mater 12:1403–1419

    Article  CAS  Google Scholar 

  • Steinbacher JL, Landry CC (2014) Adsorption and release of siRNA from porous silica. Langmuir 30:4396–4405

    Article  CAS  Google Scholar 

  • Stober W (1968) Stober Method.Pdf 69:62–69

    Google Scholar 

  • Sumio I, Toshinari I (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–604

    Google Scholar 

  • Tang Li, Cheng Jianjun (2013) Nonporous silica nanoparticles for nanomedicine application. Nano Today 8:290–312

    Article  CAS  Google Scholar 

  • Terrones M, Romo-Herrera JM, Cruz-Silva E, López-Urías F, Muñoz-Sandoval E, Velázquez-Salazar JJ, Terrones H, Bando Y, Golberg D (2007) Pure and doped boron nitride nanotubes. Mater Today 10:30–38

    Article  CAS  Google Scholar 

  • Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–5

    Article  CAS  Google Scholar 

  • Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16:141–155

    Article  CAS  Google Scholar 

  • Unger K, Rupprecht H, Valentin BKW (1983) The use of porous and surface modified silicas as drug delivery and stabilizing agents 9:69–91

    Google Scholar 

  • Vácha R, Martinez-Veracoechea FJ, Frenkel D (2011) Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 11:5391–5395

    Article  CAS  Google Scholar 

  • Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed Engl 46:7548–7558

    Article  CAS  Google Scholar 

  • Venkatasubbu GD, Ramasamy S, Avadhani GS, Ramakrishnan V, Kumar J (2013) Surface modification and paclitaxel drug delivery of folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. Powder Technol 235:437–442

    Article  CAS  Google Scholar 

  • Wang Y, Liu Y, Luehmann H, Xia X, Brown P, Jarreau C, Welch M, Xia Y (2012) Evaluating the pharmacokinetics and in vivo cancer targeting capability of au nanocages by positron emission tomography imaging. ACS Nano 6:5880–5888

    Article  CAS  Google Scholar 

  • Wang W, Lin J, Xing C, Chai R, Abbas S, Song T, Tang C, Huang Y (2017) Fe 3 O 4 nanoparticle-coated boron nitride nanospheres: synthesis, magnetic property and biocompatibility study. Ceram Int 43:6371–6376

    Article  CAS  Google Scholar 

  • Wang X, Ramalingam M, Kong X, Zhao L (eds) (2018) Nanobiomaterials: classification, fabrication and biomedical applications, 1st edn. Wiley, Boschstr

    Google Scholar 

  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    Article  CAS  Google Scholar 

  • Wu VM, Mickens J, Uskoković V (2017) Bisphosphonate-functionalized hydroxyapatite nanoparticles for the delivery of the bromodomain inhibitor JQ1 in the treatment of osteosarcoma. ACS Appl Mater Interfaces 9:25887–25904

    Article  CAS  Google Scholar 

  • Yaari Z, Da Silva D, Zinger A, Goldman E, Kajal A, Tshuva R, Barak E, Dahan N, Hershkovitz D, Goldfeder M, Roitman JS, Schroeder A (2016) Theranostic barcoded nanoparticles for personalized cancer medicine. Nat Commun 7:1–10

    Article  CAS  Google Scholar 

  • Yuan F, Li JL, Cheng H, Zeng X, Zhang XZ (2018) A redox-responsive mesoporous silica based nanoplatform for: In vitro tumor-specific fluorescence imaging and enhanced photodynamic therapy. Biomater Sci 6:96–100

    Article  CAS  Google Scholar 

  • Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 7863:6024–6036

    Article  Google Scholar 

  • Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R, Wooley KL, Liu Y (2014) Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew Chemie Int Ed 53:156–159

    Article  CAS  Google Scholar 

  • Zhao J, Zhang B, Shen S, Chen J, Zhang Q, Jiang X, Pang Z (2015) CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J Colloid Interface Sci 450:396–403

    Article  CAS  Google Scholar 

  • Zhou Y, Quan G, Wu Q, Zhang X, Niu B, Wu B, Huang Y, Pan X, Wu C (2018) Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B 8:165–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edesia Martins Barros de Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cipreste, M.F., Andrade, G.F., da Silva, W.M., de Sousa, E.M.B. (2021). Nanoparticles for Anticancer Therapy. In: Nascimento, R.F.d., Neto, V.d.O.S., Fechine, P.B.A., Freire, P.d.T.C. (eds) Nanomaterials and Nanotechnology. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6056-3_9

Download citation

Publish with us

Policies and ethics