Skip to main content

Bariatric Procedures: Anatomical and Physiological Changes

  • Chapter
  • First Online:
Management of Nutritional and Metabolic Complications of Bariatric Surgery

Abstract

All bariatric procedures induce anatomical and physiological changes at different levels in the digestive system, according to their technical design. There are procedures where the modifications are milder and even reversible, such as Laparoscopic Adjustable Gastric Band. There are others where profound and irreversible alterations are expected in the anatomical configuration and in the physiological functioning because of extensive small bowel diversion along with gastric resection. Having a thorough knowledge of these changes is important for all professionals involved in the surgical treatment of patients suffering from morbid obesity. It helps to understand the presumed therapeutic outcomes, as well as to promptly identify and manage the possible adverse events that may result from these procedures. In this chapter, the main anatomical and physiological changes in the digestive system resulting from the most commonly performed bariatric procedures are addressed.

In understanding the basics of digestion, you’ll discover who’s in charge. Here’s a hint. It’s not you.

– Nancy Mure

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387(10026):1377–96.

    Article  Google Scholar 

  2. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Courcoulas AP, Yanovski SZ, Bonds D, Eggerman TL, Horlick M, Staten MA, et al. Long-term outcomes of bariatric surgery: a National Institutes of Health symposium. JAMA Surg. 2014;149(12):1323–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fisher DP, Johnson E, Haneuse S, Arterburn D, Coleman KJ, O’Connor PJ, et al. Association between bariatric surgery and macrovascular disease outcomes in patients with type-2 diabetes and severe obesity. JAMA. 2018;320(15):1570–82.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maciejewski ML, Arterburn DE, Van Scoyoc L, Smith VA, Yancy WS Jr, Weidenbacher HJ, et al. Bariatric surgery and long-term durability of weight loss. JAMA Surg. 2016;151(11):1046–55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307(1):56–65.

    Article  PubMed  Google Scholar 

  8. Phillips BT, Shikora SA. The history of metabolic and bariatric surgery: development of standards for patient safety and efficacy. Metabolism. 2018;79:97–107.

    Article  CAS  PubMed  Google Scholar 

  9. Abdeen G, le Roux CW. Mechanism underlying the weight loss and complications of Roux-en-Y gastric bypass. Obes Surg. 2016;26(2):410–21.

    Article  CAS  PubMed  Google Scholar 

  10. Chakravartty S, Tassinari D, Salerno A, Giorgakis E, Rubino F. What is the mechanism behind weight loss maintenance with gastric bypass? Curr Obes Rep. 2015;4(2):262–8.

    Article  PubMed  Google Scholar 

  11. Holst JJ, Madsbad S, Bojsen-Møller KN, Svane MS, Jørgensen NB, Dirksen C, et al. Mechanisms in bariatric surgery: gut hormones, diabetes resolution, and weight loss. Surg Obes Relat Dis. 2018;14(5):708–14.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim KS, Sandoval DA. Endocrine function after bariatric surgery. Compr Physiol. 2017;7(3):783–98.

    Article  PubMed  Google Scholar 

  13. Miras AD, le Roux CW. Mechanisms underlying weight loss after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2013;10(10):575–84.

    Article  PubMed  Google Scholar 

  14. Mulla CM, Middelbeek RJW, Patti ME. Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann N Y Acad Sci. 2018;1411(1):53–64.

    Article  PubMed  Google Scholar 

  15. Pucci A, Batterham RL. Mechanisms underlying the weight loss effects of RYGB and SG: similar, yet different. J Endocrinol Invest. 2019;42(2):117–28.

    Article  CAS  PubMed  Google Scholar 

  16. Schlottmann F, Galvarini MM, Dreifuss NH, Laxague F, Buxhoeveden R, Gorodner V. Metabolic effects of bariatric surgery. J Laparoendosc Adv Surg Tech A. 2018;28(8):944–8.

    Article  PubMed  Google Scholar 

  17. Herron DM, Roohipour R. Bariatric surgical anatomy and mechanisms of action. Gastrointest Endosc Clin N Am. 2011;21(2):213–28.

    Article  PubMed  Google Scholar 

  18. Ponsky TA, Brody F, Pucci E. Alterations in gastrointestinal physiology after Roux-en-Y gastric bypass. J Am Coll Surg. 2005;201(1):125–31.

    Article  PubMed  Google Scholar 

  19. Quercia I, Dutia R, Kotler DP, Belsley S, Laferrère B. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014;40(2):87–94.

    Article  CAS  PubMed  Google Scholar 

  20. Wabitsch M. Gastrointestinal endocrinology in bariatric surgery. Endocr Dev. 2017;32:124–38.

    Article  CAS  PubMed  Google Scholar 

  21. Boerlage TC, van de Laar AW, Westerlaken S, Gerdes VE, Brandjes DP. Gastrointestinal symptoms and food intolerance 2 years after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Br J Surg. 2017;104(4):393–400.

    Article  CAS  PubMed  Google Scholar 

  22. Borbély YM, Osterwalder A, Kröll D, Nett PC, Inglin RA. Diarrhea after bariatric procedures: diagnosis and therapy. World J Gastroenterol. 2017;23(26):4689–700.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Borbély Y, Schaffner E, Zimmermann L, Huguenin M, Plitzko G, Nett P, et al. De novo gastroesophageal reflux disease after sleeve gastrectomy: role of preoperative silent reflux. Surg Endosc. 2019;33(3):789–93.

    Article  PubMed  Google Scholar 

  24. Bordalo LA, Mourão DM, Bressan J. Nutritional deficiencies after bariatric surgery: why they happen? Acta Med Port. 2011;4 (Suppl):1021–8.

    Google Scholar 

  25. Høgestøl IK, Chahal-Kummen M, Eribe I, Brunborg C, Stubhaug A, Hewitt S, et al. Chronic abdominal pain and symptoms 5-years after gastric bypass for morbid obesity. Obes Surg. 2017;27(6):1438–45.

    Article  PubMed  Google Scholar 

  26. Liakopoulos V, Franzén S, Svensson AM, Miftaraj M, Ottosson J, Näslund I, et al. Pros and cons of gastric bypass surgery in individuals with obesity and type 2 diabetes: nationwide, matched, observational cohort study. BMJ Open. 2019;9(1):e023882.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mason ME, Jalagani H, Vinik AI. Metabolic complications of bariatric surgery: diagnosis and management issues. Gastroenterol Clin North Am. 2005;34(1):25–33.

    Article  PubMed  Google Scholar 

  28. Patel JJ, Mundi MS, Hurt RT, Wolfe B, Martindale RG. Micronutrient deficiencies after bariatric surgery: an emphasis on vitamins and trace minerals. Nutr Clin Pract. 2017;32(4):471–80.

    Article  CAS  PubMed  Google Scholar 

  29. Potoczna N, Harfmann S, Steffen R, Briggs R, Bieri N, Horber FF. Bowel habits after bariatric surgery. Obes Surg. 2008;18(10):1287–96.

    Article  PubMed  Google Scholar 

  30. Sabate JM, Coupaye M, Ledoux S, Castel B, Msika S, Coffin B, et al. Consequences of small intestinal bacterial overgrowth in obese patients before and after bariatric surgery. Obes Surg. 2017;27(3):599–605.

    Article  PubMed  Google Scholar 

  31. Souche R, de Jong A, Nomine-Criqui C, Nedelcu M, Brunaud L, Nocca D. Complications after bariatric surgery. Press Med. 2018;47(5):464–70.

    Article  Google Scholar 

  32. van Beek AP, Emous M, Laville M, Tack J. Dumping syndrome after esophageal, gastric or bariatric surgery: pathophysiology, diagnosis, and management. Obes Rev. 2017;18(1):68–85.

    Article  PubMed  Google Scholar 

  33. Angrisani L, Santonicola A, Iovino P, Vitiello A, Higa K, Himpens J, et al. IFSO worldwide survey 2016: primary, endoluminal, and revisional procedures. Obes Surg. 2018;28(12):3783–94.

    Article  PubMed  Google Scholar 

  34. Bastos ELS. Why has laparoscopic sleeve gastrectomy become the most accomplished bariatric procedure? Interv Obes Diabetes. 2019;2(5). https://doi.org/10.31031/IOD.2019.02.000548.

  35. Kruschitz R, Luger M, Kienbacher C, Trauner M, Klammer C, Schindler K, et al. The effect of Roux-en-Y vs. omega-loop gastric bypass on liver, metabolic parameters, and weight loss. Obes Surg. 2016;26(9):2204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Robert M, Espalieu P, Pelascini E, Caiazzo R, Sterkers A, Khamphommala L, et al. Efficacy and safety of one anastomosis gastric bypass versus Roux-en-Y gastric bypass for obesity (YOMEGA): a multicentre, randomized, open-label, non-inferiority trial. Lancet. 2019;393(10178):1299–309.

    Article  PubMed  Google Scholar 

  37. Gebelli JP, Gordejuela AG, Ramos AC, Nora M, Pereira AM, Campos JM, et al. SADI-S with right gastric artery ligation: technical systematization and early results. Arq Bras Cir Dig. 2016;29(Suppl 1):85–90.

    Article  PubMed Central  Google Scholar 

  38. Topart P, Becouarn G. The single anastomosis duodenal switch modifications: a review of the current literature on outcomes. Surg Obes Relat Dis. 2017;13(8):1306–12.

    Article  PubMed  Google Scholar 

  39. Ellacott KL, Halatchev IG, Cone RD. Interactions between gut peptides ant the central melanocortin system in the regulation of energy homeostasis. Peptides. 2006;27:340–9.

    Article  CAS  PubMed  Google Scholar 

  40. Stefanidis A, Forrest N, Brown WA, Dixon JB, O’Brien PB, Kampe J, et al. An investigation of the neural mechanisms underlying the efficacy of the adjustable gastric band. Surg Obes Relat Dis. 2016;12(4):828–38.

    Article  PubMed  Google Scholar 

  41. Tewari N, Awad S, Lobo DN. Regulation of food intake after surgery and the gut brain axis. Curr Opin Clin Nutr Metab Care. 2013;16(5):569–75.

    Article  PubMed  Google Scholar 

  42. Power ML, Schulkin J. Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite. 2008;50:194–206.

    Article  PubMed  Google Scholar 

  43. Kalinowski P, Paluszkiewicz R, Wróblewski T, Remiszewski P, Grodzicki M, Bartoszewicz Z, et al. Ghrelin, leptin, and glycemic control after sleeve gastrectomy versus Roux-en-Y gastric bypass: results of a randomized clinical trial. Surg Obes Relat Dis. 2017;13(2):1818.

    Article  Google Scholar 

  44. Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy. A prospective, double blind study. Ann Surg. 2008;247:401–7.

    Article  PubMed  Google Scholar 

  45. Yousseif A, Emmanuel J, Karra E, Millet Q, Elkalaawy M, Jenkinson AD, et al. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg. 2014;24:241–52.

    Article  PubMed  Google Scholar 

  46. Miras AD, le Roux CW. Bariatric surgery and taste: novel mechanisms of weight loss. Curr Opin Gastroenterol. 2010;26(2):140–5.

    Article  PubMed  Google Scholar 

  47. Gero D, Steinert RE, le Roux CW, Bueter M. Do food preferences change after bariatric surgery? Curr Atheroscler Rep. 2017;19(9):38.

    Article  PubMed  Google Scholar 

  48. Kapoor N, Al-Najim W, le Roux CW, Docherty NG, Kapoor N. Shifts in food preferences after bariatric surgery: observational reports and proposed mechanisms. Curr Obes Rep. 2017;6(3):246–52.

    Article  PubMed  Google Scholar 

  49. Shoar S, Naderan M, Shoar N, Modukuru VR, Mahmoodzadeh H. Alteration pattern of taste perception after bariatric surgery: a systematic review of four taste domains. Obes Surg. 2019;29(5):1542–50.

    Article  PubMed  Google Scholar 

  50. Tichansky DS, Boughter JD Jr, Madan AK. Taste change after laparoscopic Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding. Surg Obes Relat Dis. 2006;2:440–4.

    Article  PubMed  Google Scholar 

  51. Godlewski AE, Veyrune JL, Nicolas E, Ciangura CA, Chaussain CC, Czernichow S, et al. Effect of dental status on changes in mastication in patients with obesity following bariatric surgery. PLoS One. 2011;6:e22324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Laurenius A, Larsson I, Bueter M, Melanson KJ, Bosaeus I, Forslund HB, et al. Changes in eating behavior and meal pattern following Roux-en-Y gastric bypass. Int J Obes. 2012;36:348–55.

    Article  CAS  Google Scholar 

  53. Dimitriadis GK, Randeva MS, Miras AD. Potential hormone mechanisms of bariatric surgery. Curr Obes Rep. 2017;6(3):253–65.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ardila-Hani A, Soffer EE. Review article: the impact of bariatric surgery on gastrointestinal motility. Aliment Pharmacol Ther. 2011;34(8):825–31.

    Article  CAS  PubMed  Google Scholar 

  55. Deloose E, Janssen P, Lannoo M, Van der Schueren B, Depoortere I, Tack J. Higher plasma motilin levels in obese patients decrease after Roux-en-Y gastric bypass surgery and regulate hunger. Gut. 2016;65(7):1110–8.

    Article  CAS  PubMed  Google Scholar 

  56. Sista F, Abruzzese V, Clementi M, Carandina S, Cecilia M, Amicucci G. The effect of sleeve gastrectomy on GLP-1 secretion and gastric emptying: a prospective study. Surg Obes Relat Dis. 2017;13(1):7–14.

    Article  PubMed  Google Scholar 

  57. Ahmad A, Kornrich DB, Krasner H, Eckardt S, Ahmad Z, Braslow A, et al. Prevalence of dumping syndrome after laparoscopic sleeve gastrectomy and comparison with laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2019;29(5):1506–13.

    Article  PubMed  Google Scholar 

  58. Svane MS, Bojsen-Møller KN, Martinussen C, Dirksen C, Madsen JL, Reitelseder S, et al. Postprandial nutrient handling and gastrointestinal hormone secretion after Roux-en-Y gastric bypass vs sleeve gastrectomy. Gastroenterology. 2019;156(6):1627–41.

    Article  PubMed  Google Scholar 

  59. Ramos AC, Marchesini JC, Bastos ELS, Ramos MG, de Souza MD, Campos JM, et al. The role of gastrojejunostomy size on gastric bypass weight loss. Obes Surg. 2017;27(9):2317–23.

    Article  PubMed  Google Scholar 

  60. Farias TMCP, Vasconcelos BCDE, Souto-Maior JR, Lemos CAA, de Moraes SLD, Pellizzer EP. Influence of bariatric surgery on salivary flow: a systematic review and meta-analysis. Obes Surg. 2019;29(5):1675–80.

    Article  PubMed  Google Scholar 

  61. Rehfeld JF. Incretin physiology beyond glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides. Acta Physiol. 2011;201:405–11.

    Article  CAS  Google Scholar 

  62. Grong E, Græslie H, Munkvold B, Arbo IB, Kulseng BE, Waldum HL, et al. Gastrin secretion after bariatric surgery response to a protein-rich mixed meal following Roux-en-Y gastric bypass and sleeve gastrectomy: a pilot study in normoglycemic women. Obes Surg. 2016;26(7):1448–56.

    Article  PubMed  Google Scholar 

  63. Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg. 2012;22:740–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Billeter AT, Fischer L, Wekerle AL, Senft J, Müller-Stich B. Malabsorption as a therapeutic approach in bariatric surgery. Viszeralmedizin. 2014;30(3):198–204.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Müller MK, Räder S, Wildi S, Hauser R, Clavien PA, Weber M. Long-term follow-up of proximal versus distal laparoscopic gastric bypass for morbid obesity. Br J Surg. 2008;95(11):1375–9.

    Article  PubMed  Google Scholar 

  66. Ruiz-Tovar J, Vorwald P, Gonzalez-Ramirez G, Posada M, Salcedo G, Llavero C, et al. Impact of biliopancreatic limb length (70 cm vs 120 cm), with constant 150 cm alimentary limb, on long-term weight loss, remission of comorbidities and supplementation needs after Roux-En-Y gastric bypass: a prospective randomized clinical trial. Obes Surg. 2019;29(8):2367–72 [Epub ahead of print].

    Google Scholar 

  67. Via MA, Mechanick JI. Nutritional and micronutrient care of bariatric surgery patients: current evidence update. Curr Obes Rep. 2017;6(3):286–96.

    Article  PubMed  Google Scholar 

  68. Georgiadou D, Sergentanis TN, Nixon A, Diamantis T, Tsigris C, Psaltopoulou T. Efficacy and safety of laparoscopic mini gastric bypass. A systematic review. Surg Obes Relat Dis. 2014;10(5):984–91.

    Article  PubMed  Google Scholar 

  69. Magouliotis DE, Tasiopoulou VS, Tzovaras G. One anastomosis gastric bypass versus Roux-en-Y gastric bypass for morbid obesity: an updated meta-analysis. Obes Surg. 2019;29(9):2721–30 [Epub ahead of print].

    Google Scholar 

  70. Antoniewicz A, Kalinowski P, Kotulecka KJ, Kocoń P, Paluszkiewicz R, Remiszewski P, et al. Nutritional deficiencies in patients after Roux-en-Y gastric bypass and sleeve gastrectomy during 12-month follow-up. Obes Surg. 2019; https://doi.org/10.1007/s11695-019-03985-3. [Epub ahead of print]

  71. Bal BS, Finelli FC, Shope TR, Koch TR. Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol. 2012;8(9):544–56.

    Article  CAS  PubMed  Google Scholar 

  72. Bloomberg RD, Fleishman A, Nalle JE, Herron DM, Kini S. Nutritional deficiencies following bariatric surgery: what have we learned? Obes Surg. 2005;15(2):145–54.

    Article  PubMed  Google Scholar 

  73. Toh SY, Zarshenas N, Jorgensen J. Prevalence of nutrient deficiencies in bariatric patients. Nutrition. 2009;25(11–12):1150–6.

    Article  CAS  PubMed  Google Scholar 

  74. Ziegler O, Sirveaux MA, Brunaud L, Reibel N, Quilliot D. Medical follow up after bariatric surgery: nutritional and drug issues. General recommendations for the prevention and treatment of nutritional deficiencies. Diabetes Metab. 2009;35(6):544–57.

    Article  CAS  PubMed  Google Scholar 

  75. Majumder S, Soriano J, Louie Cruz A, Dasanu CA. Vitamin B12 deficiency in patients undergoing bariatric surgery: preventive strategies and key recommendations. Surg Obes Relat Dis. 2013;9(6):1013–9.

    Article  PubMed  Google Scholar 

  76. Ruz M, Carrasco F, Rojas P, Codoceo J, Inostroza J, Basfi-Fer K, et al. Heme- and nonheme-iron absorption and iron status 12 mo after sleeve gastrectomy and Roux-en-Y gastric bypass in morbidly obese women. Am J Clin Nutr. 2012;96:810–7.

    Article  CAS  PubMed  Google Scholar 

  77. Steenackers N, Van der Schueren B, Mertens A, Lannoo M, Grauwet T, Augustijns P, et al. Iron deficiency after bariatric surgery: what is the real problem? Proc Nutr Soc. 2018;77(4):445–55.

    Article  PubMed  Google Scholar 

  78. Lakhani SV, Shah HN, Alexander K, Finelli FC, Kirkpatrick JR, Koch TR. Small intestinal bacterial overgrowth and thiamine deficiency after Roux‑ Y gastric bypass surgery in obese patients. Nutr Res. 2008;28:293–8.

    Article  CAS  PubMed  Google Scholar 

  79. Angstadt JD, Bodziner RA. Peripheral polyneuropathy from thiamine deficiency following laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2005;15:890–2.

    Article  PubMed  Google Scholar 

  80. Saab R, El Khoury M, Farhat S. Wernicke’s encephalopathy three weeks after sleeve gastrectomy. Surg Obes Relat Dis. 2014;10(5):992–4.

    Article  PubMed  Google Scholar 

  81. Bell TD, Demay MB, Burnett-Bowie SA. The biology and pathology of vitamin D control in bone. J. Cell Biochem. 2010;111:7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu C, Wu D, Zhang JF, Xu D, Xu WF, Chen Y, et al. Changes in bone metabolism in morbidly obese patients after bariatric surgery: a meta-analysis. Obes Surg. 2016;26(1):91–7.

    Article  PubMed  Google Scholar 

  83. Schafer AL. Vitamin D and intestinal calcium transport after bariatric surgery. J Steroid Biochem Mol Biol. 2017;173:202–10.

    Article  CAS  PubMed  Google Scholar 

  84. Ballesteros-Pomar MD, González de Francisco T, Urioste-Fondo A, González-Herraez L, Calleja-Fernández A, Vidal-Casariego A, et al. Biliopancreatic diversion for severe obesity: long-term effectiveness and nutritional complications. Obes Surg. 2016;26(1):38–44.

    Article  PubMed  Google Scholar 

  85. Shoar S, Poliakin L, Rubenstein R, Saber AAA. single anastomosis duodeno-ileal switch (SADIS): a systematic review of efficacy and safety. Obes Surg. 2018;28(1):104–13.

    Article  PubMed  Google Scholar 

  86. Verger EO, Aron-Wisnewsky J, Dao MC, Kayser BD, Oppert JM, Bouillot JL, et al. Micronutrient and protein deficiencies after gastric bypass and sleeve gastrectomy: a 1-year follow-up. Obes Surg. 2016;26(4):785–96.

    Article  PubMed  Google Scholar 

  87. Mahawar KK, Sharples AJ. Contribution of malabsorption to weight loss after Roux-en-Y gastric bypass: a systematic review. Obes Surg. 2017;27(8):2194–206.

    Article  PubMed  Google Scholar 

  88. Elrick H, Stimmler L, Hlad CJ, Arai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964;24(10):1076–82.

    Article  CAS  PubMed  Google Scholar 

  89. Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest. 1967;46(12):1954–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Holst JJ, Gribble F, Horowitz M, Rayner CK. Roles of the gut in glucose homeostasis. Diabetes Care. 2016;39:884–92.

    Article  CAS  PubMed  Google Scholar 

  91. Cavin JB, Bado A, Le Gall M. Intestinal adaptations after bariatric surgery: consequences on glucose homeostasis. Trends Endocrinol Metab. 2017;28(5):354–64.

    Article  CAS  PubMed  Google Scholar 

  92. Reimann F, Gribble FM. Mechanisms underlying glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion. J Diabetes Investig. 2016;7(Suppl 1):13–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Holst JJ, Madsbad S. Mechanisms of surgical control of type 2 diabetes: GLP-1 is key factor. Surg Obes Relat Dis. 2016;12(6):1236–42.

    Article  PubMed  Google Scholar 

  94. Tsoli M, Chronaiou A, Kehagias I, Kalfarentzos F, Alexandrides TK. Hormone changes and diabetes resolution after biliopancreatic diversion and laparoscopic sleeve gastrectomy: a comparative prospective study. Surg Obes Relat Dis. 2013;9(5):667–77.

    Article  PubMed  Google Scholar 

  95. Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis. 2007;3(6):597–601.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Nosso G, Griffo E, Cotugno M, Saldalamacchia G, Lupoli R, Pacini G, et al. Comparative effects of Roux-en-Y gastric bypass and sleeve gastrectomy on glucose homeostasis and incretin hormones in obese type 2 diabetic patients: a one-year prospective study. Horm Metab Res. 2016;48(5):312–7.

    Article  CAS  PubMed  Google Scholar 

  97. Maljaars PW, Peters HP, Mela DJ, Masclee AA. Ileal brake: a sensible food target for appetite control. A review. Physiol Behav. 2008;95:271–81.

    Article  CAS  PubMed  Google Scholar 

  98. Shah S, Shah P, Todkar J, Gagner M, Sonar S, Solav S. Prospective controlled study of effect of laparoscopic sleeve gastrectomy on small bowel transit time and gastric emptying half-time in morbidly obese patients with type 2 diabetes mellitus. Surg Obes Relat Dis. 2010;6(2):152–7.

    Article  PubMed  Google Scholar 

  99. Cazzo E, Pareja JC, Chaim EA, Geloneze B, Barreto MR, Magro DO. GLP-1 and GLP-2 levels are correlated with satiety regulation after Roux-en-Y gastric bypass: results of an exploratory prospective study. Obes Surg. 2017;27(3):703–8.

    Article  PubMed  Google Scholar 

  100. Laferrère B, Swerdlow N, Bawa B, Arias S, Bose M, Olivan B, et al. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95:4072–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Chandarana K, Gelegen C, Karra E, Choudhury AI, Drew ME, Fauveau V, et al. Diet and gastrointestinal bypass-induced weight loss: the roles of ghrelin and peptide YY. Diabetes. 2011;60(3):810–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Olivan B, Teixeira J, Bose M, Bawa B, Chang T, Summe H, et al. Effect of weight loss by diet or gastric bypass surgery on peptide YY3-36 levels. Ann Surg. 2009;249:948–53.

    Article  PubMed  Google Scholar 

  103. Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013;62:3341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    Article  CAS  PubMed  Google Scholar 

  105. Anhê FF, Varin TV, Schertzer JD, Marette A. The gut microbiota as a mediator of metabolic benefits after bariatric surgery. Can J Diabetes. 2017;41(4):439–47.

    Article  PubMed  Google Scholar 

  106. Murphy R, Tsai P, Jüllig M, Liu A, Plank L, Booth M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.

    Article  PubMed  Google Scholar 

  107. Peat CM, Kleiman SC, Bulik CM, Carroll IM. The intestinal microbiome in bariatric surgery patients. Eur Eat Disord Rev. 2015;23(6):496–503.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ulker İ, Yildiran H. The effects of bariatric surgery on gut microbiota in patients with obesity: a review of the literature. Biosci Microbiota Food Health. 2019;38(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  109. Bastos ELS, Liberatore AMA, Tedesco RC, Koh IHJ. Gut microbiota imbalance can be associated with non-malabsorptive small bowel shortening regardless of blind loop. Obes Surg. 2019;29(2):369–75.

    Article  PubMed  Google Scholar 

  110. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kong LC, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot JL, et al. Gut microbiota after gastric bypass in human obesity: Increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98:16–24.

    Article  CAS  PubMed  Google Scholar 

  114. Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med 2016;8:67.

    Google Scholar 

  115. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: An integrative view. Cell. 2012;148(6):1258–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    Article  PubMed  CAS  Google Scholar 

  118. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low grade inflammation markers. Diabetes. 2010;59:3049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kellerer T, Brandl B, Büttner J, Lagkouvardos I, Hauner H, Skurk T. Impact of laparoscopic sleeve gastrectomy on gut permeability in morbidly obese subjects. Obes Surg. 2019;29(7):2132–43.

    Article  PubMed  Google Scholar 

  121. Kikuchi R, Irie J, Yamada-Goto N, Kikkawa E, Seki Y, Kasama K, et al. The impact of laparoscopic sleeve gastrectomy with duodenojejunal bypass on intestinal microbiota differs from that of laparoscopic sleeve gastrectomy in Japanese patients with obesity. Clin Drug Investig. 2018;38(6):545–52.

    Article  PubMed  Google Scholar 

  122. Ejtahed HS, Angoorani P, Hasani-Ranjbar S, Siadat SD, Ghasemi N, Larijani B, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: A systematic review. Microb Pathog. 2018;116:13–21.

    Article  PubMed  Google Scholar 

  123. Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:1–11. Article ID 806248.

    Google Scholar 

  124. Tabasi M, Ashrafian F, Khezerloo JK, Eshghjoo S, Behrouzi A, Javadinia SA, et al. Changes in gut microbiota and hormones after bariatric surgery: a bench-to-bedside review. Obes Surg. 2019;29(5):1663–74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramos, A.C., Carraso, H.V.C.J., Bastos, E.L.D.S. (2021). Bariatric Procedures: Anatomical and Physiological Changes. In: Bhasker, A.G., Kantharia, N., Baig, S., Priya, P., Lakdawala, M., Sancheti, M.S. (eds) Management of Nutritional and Metabolic Complications of Bariatric Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-33-4702-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4702-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4701-4

  • Online ISBN: 978-981-33-4702-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics