Skip to main content

Endocrine and Metabolic Complications After Bariatric Surgery

  • Chapter
  • First Online:
Management of Nutritional and Metabolic Complications of Bariatric Surgery

Abstract

Overweight and obesity are epidemic around the world. They represent a spectrum of a chronic disease causing physical, metabolic, and psychological derangements that deteriorate health. Adipose tissue may become diseased, a condition called adiposopathy. Adiposopathy includes changes in fat mass (adiposity) along with changes in adipose tissue architecture and function, and the preferential distribution of adipose tissue into some compartments like intra-abdominal (visceral) fat. All of this constitutes the pathophysiology of adipose tissue, and its contribution to this chronic disease. The standard of medical care in 2021 is to aggressively treat adiposopathy, overweight, and obesity. Bariatric surgery should be offered to patients whose disease is truly refractory to medical management with lifestyle changes, medical nutrition therapy, increased physical activity, pharmacotherapy, and non-invasive procedures. Bariatric surgery is not a cure for adiposopathy, overweight, or obesity. Rather, it is effective treatment, and can put them into remission. Bariatric surgery does not change the need to monitor and treat patients for life. Clinicians should be familiar with the risks and benefits of the bariatric procedures available, and the potential complications that may develop from them.

This chapter discusses the metabolic and endocrine changes in adiposopathy, overweight and obesity. It reviews the response of these changes to common bariatric surgeries. Finally, this chapter also addresses the potential endocrine complications of bariatric surgery, and their management. Endocrine complications of bariatric surgery include increased insulin sensitivity with reactive hypoglycemia, non-insulinoma pancreatogenous hypoglycemia syndrome, hypocalcemia, secondary hyperparathyroidism, metabolic bone disease, decreased thyroid hormone requirements in patients with corrected hypothyroidism, correction of gonadal dysfunction that improves fertility and may lead to unintended pregnancy, and vitamin and trace element deficiencies.

Hormones are powerful things, we are helpless in their wake

—Meg Cabot

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1,25(OH)2D:

1,25Dihydroxy-vitamin D

25(OH)D:

25-Hydroxy-vitamin D

ASBMS:

American Society for Bariatric and Metabolic Surgery

BMI:

Body mass index

BPD-DS:

Biliopancreatic diversion with duodenal switch

EWL:

Excess weight loss

GIP:

Gastric inhibitory polypeptide

GLP-1:

Glucagon-like peptide-1

LAGB:

Laparoscopic adjustable gastric banding

mg:

Milligrams

mg/dL:

Milligrams per deciliter

ng/mL:

Nanograms per milliliter

NIPHS:

Noninsulinoma pancreatogenous hypoglycemia syndrome

PCOS:

Polycystic ovarian syndrome

PTH:

Parathyroid hormone

RYGB:

Roux-en-Y gastric bypass

SAGB:

Single anastomosis gastric bypass

SG:

Sleeve gastrectomy

SHPT:

Secondary hyperparathyroidism

T2DM:

Type 2 diabetes mellitus

TSH:

Thyroid stimulating hormone

VBG:

Vertical banded gastroplasty

VIP:

Vasoactive intestinal peptide

References

  1. Gonzalez-Campoy J. Hormonal regulation of energy balance and energy stores. In: Gonzalez-Campoy JM, et al., editors. Bariatric endocrinology. Switzerland: Springer International; 2018. p. 37–58.

    Google Scholar 

  2. Bays HE, Gonzalez-Campoy JM. Adiposopathy. In: Friedberg E, et al., editors. New-opathies. Singapore: World Scientific; 2012. p. 105–68.

    Chapter  Google Scholar 

  3. Bays HE, Gonzalez-Campoy JM, Henry RR, et al. Is adiposopathy (sick fat) an endocrine disease? Int J Clin Pract. 2008;62(10):1474–83. Epub 2008/08/07.

    Google Scholar 

  4. Christofides E, Gonzalez-Campoy J. Adiposopathy. In: Friedberg E, et al., editors. Bariatric endocrinology. Switzerland: Springer International; 2018. p. 99–120.

    Google Scholar 

  5. Gonzalez-Campoy J. Bariatric endocrinology, adiposopathy, and disorders of regional fat distribution. AACE Clin Case Rep. 2017;3(4):e387–e90.

    Article  Google Scholar 

  6. Gonzalez-Campoy JM, Richardson B, Richardson C, et al. Bariatric endocrinology: principles of medical practice. Int J Endocrinol. 2014;2014:917813. Epub 2014/06/06.

    Google Scholar 

  7. Gonzalez-Campoy JM. The birth of bariatric endocrinology and the coming of age of obesity medicine. US Endocrinol [Internet]. 2016;12(1):10-1. https://doi.org/10.17925/USE.2016.12.01.10.

  8. Gonzalez-Campoy J. Bariatric endocrinology. In: Gonzalez-Campoy JM, et al., editors. Bariatric Endocrinology. Switzerland: Springer International; 2018. p. 1–18.

    Google Scholar 

  9. Mechanick JI, Apovian C, Brethauer S, et al. Clinical Practice Guidelines for the Perioperative Nutrition, Metabolic, and Nonsurgical Support of Patients Undergoing Bariatric Procedures – 2019 Update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, the Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Endocr Pract. 2019. Epub 2019/11/05.

    Google Scholar 

  10. Bays HE, Laferrere B, Dixon J, et al. Adiposopathy and bariatric surgery: is ‘sick fat’ a surgical disease? Int J Clin Pract. 2009;63(9):1285–300. Epub 2009/08/21.

    Google Scholar 

  11. Gonzalez-Campoy J. Bariatric procedures. In: Gonzalez-Campoy JM, et al., editors. Bariatric endocrinology. Switzerland: Springer International; 2018. p. 413–42.

    Google Scholar 

  12. Booth H, Khan O, Prevost T, et al. Incidence of type 2 diabetes after bariatric surgery: population-based matched cohort study. Lancet Diabetes Endocrinol. 2014;2(12):963–8. Epub 2014/12/04.

    Google Scholar 

  13. McMahon MM, Sarr MG, Clark MM, et al. Clinical management after bariatric surgery: value of a multidisciplinary approach. Mayo Clin Proc. 2006;81(10 Suppl):S34–45. Epub 2006/10/14.

    Google Scholar 

  14. Roth DE, Abrams SA, Aloia J, et al. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low- and middle-income countries. Ann N Y Acad Sci. 2018;1430(1):44–79. Epub 2018/09/19.

    Google Scholar 

  15. Mitchell DM, Henao MP, Finkelstein JS, et al. Prevalence and predictors of vitamin D deficiency in healthy adults. Endocr Pract. 2012;18(6):914–23. Epub 2012/09/18.

    Google Scholar 

  16. Topart P, Becouarn G, Delarue J. Weight loss and nutritional outcomes 10 years after biliopancreatic diversion with duodenal switch. Obes Surg. 2017;27(7):1645–50. Epub 2017/01/05.

    Article  PubMed  Google Scholar 

  17. Tardio V, Blais JP, Julien AS, et al. Serum parathyroid hormone and 25-hydroxyvitamin D concentrations before and after biliopancreatic diversion. Obes Surg. 2018. Epub 2018/01/13.

    Google Scholar 

  18. Wei JH, Lee WJ, Chong K, et al. High incidence of secondary hyperparathyroidism in bariatric patients: comparing different procedures. Obes Surg. 2018;28(3):798–804. Epub 2017/09/19.

    Google Scholar 

  19. Coates PS, Fernstrom JD, Fernstrom MH, et al. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89(3):1061–5. Epub 2004/03/06.

    Google Scholar 

  20. Collazo-Clavell ML, Jimenez A, Hodgson SF, et al. Osteomalacia after Roux-en-Y gastric bypass. Endocr Pract. 2004;10(3):195–8. Epub 2004/08/18.

    Google Scholar 

  21. Williams SE. Metabolic bone disease in the bariatric surgery patient. J Obes. 2011;2011:634614. Epub 2011/01/29.

    Article  PubMed  Google Scholar 

  22. Saad R, Habli D, El Sabbagh R, et al. Bone health following bariatric surgery: an update. J Clin Densitometry. 2019. Epub 2019/09/15.

    Google Scholar 

  23. Nakamura KM, Haglind EG, Clowes JA, et al. Fracture risk following bariatric surgery: a population-based study. Osteoporos Int. 2014;25(1):151–8. Epub 2013/08/06.

    Google Scholar 

  24. Rousseau C, Jean S, Gamache P, et al. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. BMJ. 2016;354:i3794. Epub 2016/11/05.

    Google Scholar 

  25. Marsk R, Jonas E, Rasmussen F, et al. Nationwide cohort study of post-gastric bypass hypoglycaemia including 5,040 patients undergoing surgery for obesity in 1986-2006 in Sweden. Diabetologia. 2010;53(11):2307–11. Epub 2010/05/25.

    Google Scholar 

  26. Capristo E, Panunzi S, De Gaetano A, et al. Incidence of hypoglycemia after gastric bypass versus sleeve gastrectomy: a randomized trial. J Clin Endocrinol Metab. 2018; Epub 2018/03/29.

    Google Scholar 

  27. Lee CJ, Wood GC, Lazo M, et al. Risk of post-gastric bypass surgery hypoglycemia in nondiabetic individuals: a single center experience. Obesity (Silver Spring). 2016;24(6):1342–8. Epub 2016/05/27.

    Article  CAS  PubMed Central  Google Scholar 

  28. Zendel A, Abu-Ghanem Y, Dux J, et al. The impact of bariatric surgery on thyroid function and medication use in patients with hypothyroidism. Obes Surg. 2017;27(8):2000–4. Epub 2017/03/04.

    Article  PubMed  Google Scholar 

  29. Julia H, Benaiges D, Molla P, et al. Changes in thyroid replacement therapy after bariatric surgery: differences between laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy. Obes Surg. 2019;29(8):2593–9. Epub 2019/04/27.

    Article  PubMed  Google Scholar 

  30. Juiz-Valina P, Outeirino-Blanco E, Pertega S, et al. Effect of weight loss after bariatric surgery on thyroid-stimulating hormone levels in euthyroid patients with morbid obesity. Nutrients. 2019;11(5). Epub 2019/05/30.

    Google Scholar 

  31. Gokosmanoglu F, Aksoy E, Onmez A, et al. Thyroid homeostasis after bariatric surgery in obese cases. Obes Surg. 2019. Epub 2019/10/17.

    Google Scholar 

  32. Neves JS, Castro Oliveira S, Souteiro P, et al. Effect of weight loss after bariatric surgery on thyroid-stimulating hormone levels in patients with morbid obesity and normal thyroid function. Obes Surg. 2018;28(1):97–103. Epub 2017/07/21.

    Article  PubMed  Google Scholar 

  33. Zhang H, Liu W, Han X, et al. Effect of laparoscopic Roux-en-Y gastric bypass surgery on thyroid hormone levels in chinese patients, could it be a risk for thyroid nodules? Obes Surg. 2017;27(10):2619–27. Epub 2017/05/05.

    Article  PubMed  Google Scholar 

  34. Gonzalez-Campoy J. Gonadal dysfunction in males with overweight, obesity and adiposopathy. In: Gonzalez-Campoy JM, et al., editors. Bariatric endocrinology. Switzerland: Springer International; 2018. p. 271–82.

    Google Scholar 

  35. Gonzalez-Campoy J. Gonadal dysfunction and infertility in women with obesity. In: Gonzalez-Campoy JM, et al., editors. Bariatric endocrinology. Switzerland: Springer International; 2018. p. 283–92.

    Google Scholar 

  36. Kominiarek MA, Jungheim ES, Hoeger KM, et al. American Society for Metabolic and Bariatric Surgery position statement on the impact of obesity and obesity treatment on fertility and fertility therapy endorsed by the American College of Obstetricians and Gynecologists and the Obesity Society. Surg Obes Relat Dis. 2017;13(5):750–7. Epub 2017/04/19.

    Article  PubMed  Google Scholar 

  37. Moran LJ, Norman RJ. The effect of bariatric surgery on female reproductive function. J Clin Endocrinol Metab. 2012;97(12):4352–4. Epub 2012/12/12.

    Article  CAS  PubMed  Google Scholar 

  38. Legro RS, Dodson WC, Gnatuk CL, et al. Effects of gastric bypass surgery on female reproductive function. J Clin Endocrinol Metab. 2012;97(12):4540–8. Epub 2012/10/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Curtis KM, Tepper NK, Jatlaoui TC, et al. U.S. medical eligibility criteria for contraceptive use, 2016. MMWR Recomm Rep/Centers for Disease Control. 2016;65(3):1–103. Epub 2016/07/29.

    Article  Google Scholar 

  40. Duran de Campos C, Dalcanale L, Pajecki D, et al. Calcium intake and metabolic bone disease after eight years of Roux-en-Y gastric bypass. Obes Surg. 2008;18(4):386–90. Epub 2008/02/01.

    Article  PubMed  Google Scholar 

  41. Tondapu P, Provost D, Adams-Huet B, et al. Comparison of the absorption of calcium carbonate and calcium citrate after Roux-en-Y gastric bypass. Obes Surg. 2009;19(9):1256–61. Epub 2009/05/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sakhaee K, Pak C. Superior calcium bioavailability of effervescent potassium calcium citrate over tablet formulation of calcium citrate after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2013;9(5):743–8. Epub 2012/01/10.

    Article  PubMed  Google Scholar 

  43. Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev. 2013;93(1):189–268. Epub 2013/01/11.

    Article  CAS  PubMed  Google Scholar 

  44. Schafer AL. Vitamin D and intestinal calcium transport after bariatric surgery. J Steroid Biochem Mol Biol. 2017;173:202–10. Epub 2016/12/29.

    Article  CAS  PubMed  Google Scholar 

  45. Karefylakis C, Naslund I, Edholm D, et al. Vitamin D status 10 years after primary gastric bypass: gravely high prevalence of hypovitaminosis D and raised PTH levels. Obes Surg. 2014;24(3):343–8. Epub 2013/10/29.

    Article  PubMed  Google Scholar 

  46. Hewitt S, Sovik TT, Aasheim ET, et al. Secondary hyperparathyroidism, vitamin D sufficiency, and serum calcium 5 years after gastric bypass and duodenal switch. Obes Surg. 2013;23(3):384–90. Epub 2012/09/28.

    Article  PubMed  Google Scholar 

  47. Switzer NJ, Marcil G, Prasad S, et al. Long-term hypovitaminosis D and secondary hyperparathyroidism outcomes of the Roux-en-Y gastric bypass: a systematic review. Obes Rev. 2017;18(5):560–6. Epub 2017/03/09.

    Article  CAS  PubMed  Google Scholar 

  48. Sethi M, Chau E, Youn A, et al. Long-term outcomes after biliopancreatic diversion with and without duodenal switch: 2-, 5-, and 10-year data. Surg Obes Relat Dis. 2016;12(9):1697–705. Epub 2016/07/19.

    Article  PubMed  Google Scholar 

  49. Corbeels K, Verlinden L, Lannoo M, et al. Thin bones: vitamin D and calcium handling after bariatric surgery. Bone Rep. 2018;8:57–63. Epub 2018/06/30.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ivaska KK, Huovinen V, Soinio M, et al. Changes in bone metabolism after bariatric surgery by gastric bypass or sleeve gastrectomy. Bone. 2017;95:47–54. Epub 2016/11/08.

    Article  CAS  PubMed  Google Scholar 

  51. Uebelhart B. Effects of bariatric surgery on bone. Joint Bone Spine. 2016;83(3):271–5. Epub 2016/03/20.

    Article  PubMed  Google Scholar 

  52. Luhrs AR, Davalos G, Lerebours R, et al. Determining changes in bone metabolism after bariatric surgery in postmenopausal women. Surg Endosc. 2019. Epub 2019/06/19..

    Google Scholar 

  53. Martinussen C, Bojsen-Moller KN, Dirksen C, et al. Immediate enhancement of first-phase insulin secretion and unchanged glucose effectiveness in patients with type 2 diabetes after Roux-en-Y gastric bypass. Am J Physiol Endocrinol Metab. 2015;308(6):E535–44. Epub 2015/01/30.

    Article  CAS  PubMed  Google Scholar 

  54. de Oliveira LF, Tisott CG, Silvano DM, et al. Glycemic behavior in 48 hours postoperative period of patients with type 2 diabetes mellitus and non diabetic submitted to bariatric surgery. Arquivos brasileiros de cirurgia digestiva: ABCD/Brazil Archiv Digest Surg. 2015;28 Suppl 1:26–30. Epub 2015/11/06.

    Google Scholar 

  55. Diemer DM, Terry KL, Matthews M, et al. Postoperative insulin requirements in bariatric surgery. Endocr Pract. 2017;23(12):1369–74. Epub 2017/10/12.

    Article  PubMed  Google Scholar 

  56. van Beek AP, Emous M, Laville M, et al. Dumping syndrome after esophageal, gastric or bariatric surgery: pathophysiology, diagnosis, and management. Obes Rev. 2017;18(1):68–85. Epub 2016/10/18.

    Article  PubMed  Google Scholar 

  57. Mesureur L, Arvanitakis M. Metabolic and nutritional complications of bariatric surgery: a review. Acta Gastro-Enterologica Belgica. 2017;80(4):515–25. Epub 2018/03/22.

    CAS  PubMed  Google Scholar 

  58. Chaves YD, Destefani AC. Pathophysiology, diagnosis and treatmentof dumping syndrome and its relation to bariatric surgery. Arquivos brasileiros de cirurgia digestiva: ABCD/Brazil Archiv Digest Surg. 2016;29(Suppl 1):116–9. Epub 2016/09/30.

    Google Scholar 

  59. Eisenberg D, Azagury DE, Ghiassi S, et al. ASMBS position statement on postprandial hyperinsulinemic hypoglycemia after bariatric surgery. Surg Obes Relat Dis. 2017;13(3):371–8. Epub 2017/01/24.

    Article  PubMed  Google Scholar 

  60. Ramadan M, Loureiro M, Laughlan K, et al. Risk of dumping syndrome after sleeve gastrectomy and Roux-en-Y gastric bypass: early results of a multicentre prospective study. Gastroenterol Res Pract. 2016;2016:2570237. Epub 2016/06/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berg P, McCallum R. Dumping syndrome: a review of the current concepts of pathophysiology, diagnosis, and treatment. Dig Dis Sci. 2016;61(1):11–8. Epub 2015/09/24.

    Article  PubMed  Google Scholar 

  62. Roslin MS, Oren JH, Polan BN, et al. Abnormal glucose tolerance testing after gastric bypass. Surg Obes Relat Dis. 2013;9(1):26–31. Epub 2012/03/09.

    Article  PubMed  Google Scholar 

  63. Roslin M, Damani T, Oren J, et al. Abnormal glucose tolerance testing following gastric bypass demonstrates reactive hypoglycemia. Surg Endosc. 2011;25(6):1926–32. Epub 2010/12/25.

    Article  PubMed  Google Scholar 

  64. Kim SH, Liu TC, Abbasi F, et al. Plasma glucose and insulin regulation is abnormal following gastric bypass surgery with or without neuroglycopenia. Obes Surg. 2009;19(11):1550–6. Epub 2009/06/27.

    Article  PubMed  Google Scholar 

  65. Honka H, Salehi M. Postprandial hypoglycemia after gastric bypass surgery: from pathogenesis to diagnosis and treatment. Curr Opin Clin Nutr Metab Care. 2019;22(4):295–302. Epub 2019/05/15.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Salehi M, Vella A, McLaughlin T, et al. Hypoglycemia after gastric bypass surgery: current concepts and controversies. J Clin Endocrinol Metab. 2018;103(8):2815–26. Epub 2018/08/14.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yaqub A, Smith EP, Salehi M. Hyperinsulinemic hypoglycemia after gastric bypass surgery: what’s up and what’s down? Int J Obes (Lond). 2017. Epub 2017/11/01.

    Google Scholar 

  68. Vella A, Service FJ. Incretin hypersecretion in post-gastric bypass hypoglycemia–primary problem or red herring? J Clin Endocrinol Metab. 2007;92(12):4563–5. Epub 2007/12/07.

    Article  CAS  PubMed  Google Scholar 

  69. Service FJ, Natt N, Thompson GB, et al. Noninsulinoma pancreatogenous hypoglycemia: a novel syndrome of hyperinsulinemic hypoglycemia in adults independent of mutations in Kir6.2 and SUR1 genes. J Clin Endocrinol Metab. 1999;84(5):1582–9. Epub 1999/05/14.

    PubMed  Google Scholar 

  70. Guan B, Chen Y, Yang J, et al. Effect of bariatric surgery on thyroid function in obese patients: a systematic review and meta-analysis. Obes Surg. 2017;27(12):3292–305. Epub 2017/10/19.

    Article  PubMed  Google Scholar 

  71. Mechanick JI, Kushner RF, Sugerman HJ, et al. American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery Medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Endocr Pract. 2008;14(Suppl 1):1–83. Epub 2008/09/06.

    Article  PubMed  Google Scholar 

  72. Gagnon C, Schafer AL. Bone health after bariatric surgery. JBMR Plus. 2018;2(3):121–33. Epub 2018/10/05.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kendler DL, Compston J, Carey JJ, et al. Repeating measurement of bone mineral density when monitoring with dual-energy X-ray absorptiometry: 2019 ISCD Official Position. J Clin Densitometry. 2019;22(4):489–500. Epub 2019/08/06.

    Article  Google Scholar 

  74. Ohrstrom CC, Worm D, Hansen DL. Postprandial hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass: an update. Surg Obes Relat Dis. 2017;13(2):345–51. Epub 2016/11/21.

    Article  PubMed  Google Scholar 

  75. Patti ME, Li P, Goldfine AB. Insulin response to oral stimuli and glucose effectiveness increased in neuroglycopenia following gastric bypass. Obesity (Silver Spring). 2015;23(4):798–807. Epub 2015/03/11.

    Article  CAS  PubMed Central  Google Scholar 

  76. Patti ME, Goldfine AB. Hypoglycaemia following gastric bypass surgery–diabetes remission in the extreme? Diabetologia. 2010;53(11):2276–9. Epub 2010/08/24.

    Article  CAS  PubMed  Google Scholar 

  77. Himpens JM, Vilallonga R, Cadiere GB, et al. Metabolic consequences of the incorporation of a Roux limb in an omega loop (mini) gastric bypass: evaluation by a glucose tolerance test at mid-term follow-up. Surg Endosc. 2016;30(7):2935–45. Epub 2015/10/22.

    Article  PubMed  Google Scholar 

  78. Z’Graggen K, Guweidhi A, Steffen R, et al. Severe recurrent hypoglycemia after gastric bypass surgery. Obes Surg. 2008;18(8):981–8. Epub 2008/04/29.

    Article  PubMed  Google Scholar 

  79. Abellan P, Camara R, Merino-Torres JF, et al. Severe hypoglycemia after gastric bypass surgery for morbid obesity. Diabetes Res Clin Pract. 2008;79(1):e7–9. Epub 2007/09/07.

    Article  PubMed  Google Scholar 

  80. Cryer PE, Axelrod L, Grossman AB, et al. Evaluation and management of adult hypoglycemic disorders: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2009;94(3):709–28. Epub 2008/12/18.

    Article  CAS  PubMed  Google Scholar 

  81. Service GJ, Thompson GB, Service FJ, et al. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med. 2005;353(3):249–54. Epub 2005/07/22.

    Article  PubMed  Google Scholar 

  82. Thompson SM, Vella A, Thompson GB, et al. Selective arterial calcium stimulation with hepatic venous sampling differentiates insulinoma from nesidioblastosis. J Clin Endocrinol Metab. 2015;100(11):4189–97. Epub 2015/08/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mechanick JI, Apovian C, Brethauer S, et al. Clinical Practice Guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures – 2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, the Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists – Executive Summary. Endocr Pract. 2019;25(12):1346–59. Epub 2019/11/05.

    Google Scholar 

  84. Atlantis E, Langford K, Piya M, et al. Physical capacity outcomes in patients with severe obesity after 12 months of physician-led multidisciplinary team care: a case series from a public hospital clinical obesity service. Clin Obes. 2019;9(6):e12337. Epub 2019/09/03.

    Article  PubMed  Google Scholar 

  85. Foster D, Sanchez-Collins S, Cheskin LJ. Multidisciplinary team-based obesity treatment in patients with diabetes: current practices and the state of the science. Diabetes Spectrum. 2017;30(4):244–9. Epub 2017/11/21.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Shealy K, Wagner S, Clements J, et al. Team-based approach to obesity management. J South Carolina Med Assoc. 2014;110(3):98–100. Epub 2014/09/01.

    Google Scholar 

  87. Baretta GA, Cambi MP, Rodrigues AL, et al. Secondary hyperparathyroidism after bariatric surgery: treatment is with calcium carbonate or calcium citrate? Arquivos brasileiros de cirurgia digestiva: ABCD/Brazil Archiv Digest Surg. 2015;28 Suppl 1:43–5. Epub 2015/11/06.

    Google Scholar 

  88. Alexandrou A, Tsoka E, Armeni E, et al. Determinants of secondary hyperparathyroidism in bariatric patients after Roux-en-Y gastric bypass or sleeve gastrectomy: a pilot study. Int J Endocrinol. 2015;2015:984935. Epub 2015/05/08.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Suhl E, Anderson-Haynes SE, Mulla C, et al. Medical nutrition therapy for post-bariatric hypoglycemia: practical insights. Surg Obes Relat Dis. 2017;13(5):888–96. Epub 2017/04/11.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wysocki M, Szopa M, Stefura T, et al. Continuous glucose monitoring in bariatric patients undergoing laparoscopic sleeve gastrectomy and laparoscopic Roux-En-Y gastric bypass. Obes Surg. 2019;29(4):1317–26. Epub 2019/02/10.

    Article  PubMed  Google Scholar 

  91. Novodvorsky P, Walkinshaw E, Rahman W, et al. Experience with FreeStyle Libre Flash glucose monitoring system in management of refractory dumping syndrome in pregnancy shortly after bariatric surgery. Endocrinol Diabetes Metab Case Rep. 2017;2017. Epub 2018/01/06.

    Google Scholar 

  92. Nielsen JB, Abild CB, Pedersen AM, et al. Continuous glucose monitoring after gastric bypass to evaluate the glucose variability after a low-carbohydrate diet and to determine hypoglycemia. Obes Surg. 2016;26(9):2111–8. Epub 2016/01/13.

    Article  PubMed  Google Scholar 

  93. Mordes JP, Alonso LC. Evaluation, medical therapy, and course of adult persistent hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass surgery: a case series. Endocr Pract. 2015;21(3):237–46. Epub 2014/08/08.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Valderas JP, Ahuad J, Rubio L, et al. Acarbose improves hypoglycaemia following gastric bypass surgery without increasing glucagon-like peptide 1 levels. Obes Surg. 2012;22(4):582–6. Epub 2011/12/14.

    Article  PubMed  Google Scholar 

  95. Moreira RO, Moreira RB, Machado NA, et al. Post-prandial hypoglycemia after bariatric surgery: pharmacological treatment with verapamil and acarbose. Obes Surg. 2008;18(12):1618–21. Epub 2008/06/21.

    Article  PubMed  Google Scholar 

  96. Gonzalez-Gonzalez A, Delgado M, Fraga-Fuentes MD. Use of diazoxide in management of severe postprandial hypoglycemia in patient after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2013;9(1):e18–9. Epub 2011/07/05.

    Article  PubMed  Google Scholar 

  97. Vilarrasa N, Goday A, Rubio MA, et al. Hyperinsulinemic hypoglycemia after bariatric surgery: diagnosis and management experience from a Spanish Multicenter Registry. Obes Facts. 2016;9(1):41–51. Epub 2016/02/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Myint KS, Greenfield JR, Farooqi IS, et al. Prolonged successful therapy for hyperinsulinaemic hypoglycaemia after gastric bypass: the pathophysiological role of GLP1 and its response to a somatostatin analogue. Eur J Endocrinol. 2012;166(5):951–5. Epub 2012/03/13.

    Article  CAS  PubMed  Google Scholar 

  99. Ritz P, Vaurs C, Bertrand M, et al. Usefulness of acarbose and dietary modifications to limit glycemic variability following Roux-en-Y gastric bypass as assessed by continuous glucose monitoring. Diabetes Technol Ther. 2012;14(8):736–40. Epub 2012/08/03.

    Article  CAS  PubMed  Google Scholar 

  100. Koklu E, Ozkan KU, Sayar H, et al. Treatment of hyperinsulinemic hypoglycemia because of diffuse nesidioblastosis with nifedipine after surgical therapies in a newborn. J Pediatr Endocrinol Metab. 2013;26(11–12):1153–6. Epub 2013/06/12.

    CAS  PubMed  Google Scholar 

  101. Abrahamsson N, Engstrom BE, Sundbom M, et al. GLP1 analogs as treatment of postprandial hypoglycemia following gastric bypass surgery: a potential new indication? Eur J Endocrinol. 2013;169(6):885–9. Epub 2013/10/03.

    Article  CAS  PubMed  Google Scholar 

  102. Davis DB, Khoraki J, Ziemelis M, et al. Roux en Y gastric bypass hypoglycemia resolves with gastric feeding or reversal: confirming a non-pancreatic etiology. Molec Metab. 2018;9:15–27. Epub 2018/02/17.

    Article  CAS  Google Scholar 

  103. Shoar S, Nguyen T, Ona MA, et al. Roux-en-Y gastric bypass reversal: a systematic review. Surg Obes Relat Dis. 2016;12(7):1366–72. Epub 2016/10/26.

    Article  PubMed  Google Scholar 

  104. Rao BB, Click B, Eid G, et al. Management of refractory noninsulinoma pancreatogenous hypoglycemia syndrome with gastric bypass reversal: a case report and review of the literature. Case Rep Endocrinol. 2015;2015:384526. Epub 2015/11/03.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Gonzalez-Campoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzalez-Campoy, J.M., Proebstle, C.B., Pierson, A., Knaebe, B., Richardson, B.W. (2021). Endocrine and Metabolic Complications After Bariatric Surgery. In: Bhasker, A.G., Kantharia, N., Baig, S., Priya, P., Lakdawala, M., Sancheti, M.S. (eds) Management of Nutritional and Metabolic Complications of Bariatric Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-33-4702-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4702-1_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4701-4

  • Online ISBN: 978-981-33-4702-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics