Skip to main content

Cubosomes: Novel Nanocarriers for Drug Delivery

  • Chapter
  • First Online:
Nanocarriers: Drug Delivery System

Abstract

Cubosomes are nanostructured systems which are made up of various amphiphilic lipids and stabilizers in a definite proportion. Cubosomes have a curved bicontinuous lipid bilayer which is organized in a three-dimensional space in such a way that gives it a honeycomb-like structure. In general, cubosomes are the colloidal dispersion of a bicontinuous cubic liquid phase in a solution of suitable stabilizers like poloxamers. Cubosomes are associated with a number of advantages compared to vesicular structures like liposomes and niosomes. They can incorporate a wide range of drugs like hydrophilic, lipophilic, and amphiphilic and moreover they are more thermodynamically stable than liposomes, niosomes, and other vesicular nanocarriers. They are also bioadhesive in nature and provide controlled release of a drug over longer period of time. Due to its unique properties, cubosomes are proving to be promising drug delivery systems. This chapter focuses on various aspects of cubosomes such as the mechanism of their formation, advantages and limitations, methods of preparation and characterization, applications in drug delivery, and safety and toxicity concerns. The various research works reported for therapeutic applications of cubosomes and the related patents have also been included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Bar HM, el Basset Sanad RA (2017) Endocytic pathways of optimized resveratrol cubosomes capturing into human hepatoma cells. Biomed Pharmacother 93:561–569

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman FE, Elsayed I, Gad MK et al (2015) Investigating the cubosomal ability for transnasal brain targeting: in vitro optimization, ex vivo permeation and in vivo biodistribution. Int J Pharm 490(1–2):281–291

    Article  CAS  PubMed  Google Scholar 

  • Ahirrao M, Shrotriya S (2017) In vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting. Drug Dev Ind Pharm 43(10):1686–1693

    Article  CAS  PubMed  Google Scholar 

  • Akhlaghi SP, Loh W (2017) Interactions and release of two palmitoyl peptides from phytantriol cubosomes. Eur J Pharm Biopharm 117:60–67

    Article  CAS  PubMed  Google Scholar 

  • Akhlaghi SP, Ribeiro IR, Boyd BJ et al (2016) Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic® F127 cubosomes. Colloids Surf B Biointerfaces 145:845–853

    Article  CAS  PubMed  Google Scholar 

  • Alexandridis P (1996) Amphiphilic copolymers and their applications. Curr Opin Colloid Interface Sci 1(4):490–501

    Article  CAS  Google Scholar 

  • Ali MA, Kataoka N, Ranneh A-H et al (2017) Enhancing the solubility and oral bioavailability of poorly water-soluble drugs using monoolein cubosomes. Chem Pharm Bull 65(1):42–48

    Article  CAS  Google Scholar 

  • Anbarasan B, Grace X, Shanmuganathan S (2015) An overview of cubosomes—smart drug delivery system. Sri Ramachandra J Med 8:1–4

    Google Scholar 

  • Angelov B, Angelova A, Garamus VM et al (2012) Earliest stage of the tetrahedral nanochannel formation in cubosome particles from unilamellar nanovesicles. Langmuir 28(48):16647–16655

    Article  CAS  PubMed  Google Scholar 

  • Angelov B, Angelova A, Drechsler M et al (2015) Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. Soft Matter 11(18):3686–3692

    Article  CAS  PubMed  Google Scholar 

  • Avachat AM, Parpani SS (2015) Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz. Colloids Surf B Biointerfaces 126:87–97

    Article  CAS  PubMed  Google Scholar 

  • Azhari H, Strauss M, Hook S et al (2016) Stabilising cubosomes with Tween 80 as a step towards targeting lipid nanocarriers to the blood–brain barrier. Eur J Pharm Biopharm 104:148–155

    Article  CAS  PubMed  Google Scholar 

  • Azmi IM, Nilsson C, Stürup S et al (2013) Characterization of cisplatin-loaded cubosomes and hexosomes: effect of mixing with human plasma. J Geriatr Oncol 4:S62

    Article  Google Scholar 

  • Bansal S, Kashyap CP, Aggarwal G et al (2012) A comparative review on vesicular drug delivery system and stability issues. Int J Res Pharm Chem 2(3):704–713

    CAS  Google Scholar 

  • Barauskas J, Landh T (2003) Phase behavior of the phytantriol/water system. Langmuir 19(23):9562–9565

    Article  CAS  Google Scholar 

  • Barauskas J, Johnsson M, Joabsson F et al (2005a) Cubic phase nanoparticles (cubosome): principles for controlling size, structure, and stability. Langmuir 21(6):2569–2577

    Article  CAS  PubMed  Google Scholar 

  • Barauskas J, Johnsson M, Tiberg F (2005b) Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett 5(8):1615–1619

    Article  CAS  PubMed  Google Scholar 

  • Bazylińska U, Kulbacka J, Schmidt J et al (2018) Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells. J Colloid Interface Sci 522:163–173

    Article  PubMed  CAS  Google Scholar 

  • Bei D, Marszalek J, Youan BBC (2009a) Formulation of dacarbazine-loaded cubosomes—part I: influence of formulation variables. AAPS PharmSciTech 10(3):1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bei D, Marszalek J, Youan BBC (2009b) Formulation of dacarbazine-loaded cubosomes—part II: influence of process parameters. AAPS PharmSciTech 10(3):1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boge L, Umerska A, Matougui N et al (2017) Cubosomes post-loaded with antimicrobial peptides: characterization, bactericidal effect and proteolytic stability. Int J Pharm 526(1–2):400–412

    Article  CAS  PubMed  Google Scholar 

  • Boge L, Västberg A, Umerska A et al (2018) Freeze-dried and re-hydrated liquid crystalline nanoparticles stabilized with disaccharides for drug-delivery of the plectasin derivative AP114 antimicrobial peptide. J Colloid Interface Sci 522:126–135

    Article  CAS  PubMed  Google Scholar 

  • Boge L, Hallstensson K, Ringstad L et al (2019) Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm 134:60–67

    Article  CAS  PubMed  Google Scholar 

  • Boyd BJ (2003) Characterisation of drug release from cubosomes using the pressure ultrafiltration method. Int J Pharm 260(2):239–247

    Article  CAS  PubMed  Google Scholar 

  • Boyd BJ, Whittaker DV, Khoo SM et al (2006) Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm 309(1–2):218–226

    Article  CAS  PubMed  Google Scholar 

  • Boyd BJ, Dong YD, Rades T (2009) Nonlamellar liquid crystalline nanostructured particles: advances in materials and structure determination. J Liposome Res 19(1):12–28

    Article  CAS  PubMed  Google Scholar 

  • Buchheim W, Larsson K (1987) Cubic lipid-protein-water phases. J Colloid Interface Sci 117:582–583

    Article  CAS  Google Scholar 

  • Caltagirone C, Falchi AM, Lampis S et al (2014) Cancer-cell-targeted theranostic cubosomes. Langmuir 30(21):6228–6236

    Article  CAS  PubMed  Google Scholar 

  • Chong JY, Mulet X, Boyd BJ et al (2015) Steric stabilizers for cubic phase lyotropic liquid crystal nanodispersions (cubosomes). In: Advances in planar lipid bilayers and liposomes, vol. 21. Elsevier, pp 131–187

    Google Scholar 

  • Chonn A, Cullis P, Devine D (1991) The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol 146(12):4234–4241

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Jeong SY, Kwon IC et al (2005) Composition and formulation of colloidal system comprising biocompatible aqueous-soluble polymer, and preparation method thereof. Google Patents

    Google Scholar 

  • Clogston J, Caffrey M (2005) Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids. J Control Release 107(1):97–111

    Article  CAS  PubMed  Google Scholar 

  • Crowe TP, Greenlee MHW, Kanthasamy AG et al (2018) Mechanism of intranasal drug delivery directly to the brain. Life Sci 195:44–52

    Article  CAS  PubMed  Google Scholar 

  • Czarnecki RF, Williams DL (1993) Sustained released delivery system for use in the periodontal pocket. Google Patents

    Google Scholar 

  • Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12(1):62–76

    Article  CAS  PubMed  Google Scholar 

  • Demurtas D, Guichard P, Martiel I et al (2015) Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nat Commun 6:8915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond CJ, Fong C (1999) Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci 4(6):449–456

    Article  CAS  Google Scholar 

  • Duttagupta AS, Chaudhary HM, Jadhav KR et al (2016) Cubosomes: innovative nanostructures for drug delivery. Curr Drug Deliv 13(4):482–493

    Article  CAS  PubMed  Google Scholar 

  • Elgindy NA, Mehanna MM, Mohyeldin SM (2016) Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery. Int J Pharm 501(1–2):167–179

    Article  CAS  PubMed  Google Scholar 

  • Esposito E, Cortesi R, Drechsler M et al (2005) Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 22(12):2163–2173

    Article  CAS  PubMed  Google Scholar 

  • Fontell K (1990) Cubic phases in surfactant and surfactant-like lipid systems. Colloid Polym Sci 268(3):264–285

    Article  CAS  Google Scholar 

  • Gan L, Han S, Shen J et al (2010) Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm 396(1–2):179–187

    Article  CAS  PubMed  Google Scholar 

  • Ganem-Quintanar A, Quintanar-Guerrero D, Buri P (2000) Monoolein: a review of the pharmaceutical applications. Drug Dev Ind Pharm 26(8):809–820

    Article  CAS  PubMed  Google Scholar 

  • Garg G, Saraf S, Saraf S (2007) Cubosomes: an overview. Biol Pharm Bull 30(2):350–353

    Article  CAS  PubMed  Google Scholar 

  • Garti N, Libster D, Aserin A (2012) Lipid polymorphism in lyotropic liquid crystals for triggered release of bioactives. Food Funct 3(7):700–713

    Article  CAS  PubMed  Google Scholar 

  • Gin DL, Pecinovsky CS, Bara JE et al (2007) Functional lyotropic liquid crystal materials. In: Liquid crystalline functional assemblies and their supramolecular structures. Springer, pp 181–222

    Google Scholar 

  • Guillot S, Salentinig S, Chemelli A et al (2010) Influence of the stabilizer concentration on the internal liquid crystalline order and the size of oil-loaded monolinolein-based dispersions. Langmuir 26(9):6222–6229

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Wang J, Cao F et al (2010) Lyotropic liquid crystal systems in drug delivery. Drug Discov Today 15(23–24):1032–1040

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson J, Ljusberg-Wahren H, Almgren M et al (1996) Cubic lipid−water phase dispersed into submicron particles. Langmuir 12(20):4611–4613

    Article  CAS  Google Scholar 

  • Gustafsson J, Ljusberg-Wahren H, Almgren M et al (1997) Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir 13(26):6964–6971

    Article  CAS  Google Scholar 

  • Gustafsson J, Nylander T, Almgren M et al (1999) Phase behavior and aggregate structure in aqueous mixtures of sodium cholate and glycerol monooleate. J Colloid Interface Sci 211(2):326–335

    Article  CAS  PubMed  Google Scholar 

  • Hartnett TE, Ladewig K, O’Connor AJ et al (2014) Size and phase control of cubic lyotropic liquid crystal nanoparticles. J Phys Chem B 118(26):7430–7439

    Article  CAS  PubMed  Google Scholar 

  • Higuchi WI (1967) Diffusional models useful in biopharmaceutics: drug release rate processes. J Pharm Sci 56(3):315–324

    Article  CAS  Google Scholar 

  • Hinton TM, Grusche F, Acharya D et al (2014) Bicontinuous cubic phase nanoparticle lipid chemistry affects toxicity in cultured cells. Toxicol Res 3(1):11–22

    Article  CAS  Google Scholar 

  • Hong SK, Ma JY, Kim JC (2012a) In vitro skin permeation enhancement of KIOM-MA-128 by monoolein cubosomes. J Dispers Sci Technol 33(10):1503–1508

    Article  CAS  Google Scholar 

  • Hong SK, Ma JY, Kim JC (2012b) Preparation of iron oxide nanoparticles within monoolein cubic phase. J Ind Eng Chem 18(6):1977–1982

    Article  CAS  Google Scholar 

  • Hyde S, Andersson S (1984) A cubic structure consisting of a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glycerol monooleat-water system. Zeitschrift für Kristallographie Crystal Mater 168(1–4):213–220

    CAS  Google Scholar 

  • Johnsson M, Edwards K (2001) Phase behavior and aggregate structure in mixtures of dioleoyl phosphatidylethanolamine and poly (ethylene glycol)-lipids. Biophys J 80(1):313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsson M, Barauskas J, Tiberg F (2005) Cubic phases and cubic phase dispersions in a phospholipid-based system. J Am Chem Soc 127(4):1076–1077

    Article  CAS  PubMed  Google Scholar 

  • Karami Z, Hamidi M (2016) Cubosomes: remarkable drug delivery potential. Drug Discov Today 21(5):789–801

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim Y, Lee J (2013) Liposomal formulations for enhanced lymphatic drug delivery. Asian J Pharm Sci 8(2):96–103

    Article  CAS  Google Scholar 

  • Kim D-H, Jahn A, Cho S-J et al (2015) Lyotropic liquid crystal systems in drug delivery: a review. J Pharm Invest 45(1):1–11

    Article  CAS  Google Scholar 

  • Koynova R, Tenchov B, Rapp G (1997) Low amounts of PEG-lipid induce cubic phase in phosphatidylethanolamine dispersions. Biochim Biophys Acta Biomembr 1326(2):167–170

    Article  CAS  Google Scholar 

  • Koynova R, Tenchov B, Rapp G (1999) Effect of PEG-lipid conjugates on the phase behavior of phosphatidylethanolamine dispersions. Colloids Surf A Physicochem Eng Asp 149(1–3):571–575

    Article  CAS  Google Scholar 

  • Kudchodkar BJ, Albers JJ, Bierman EL (1983) Effect of positively charged sphingomyelin liposomes on cholesterol metabolism of cells in culture. Atherosclerosis 46(3):353–367

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni CV, Wachter W, Iglesias-Salto G et al (2011) Monoolein: a magic lipid? Phys Chem Chem Phys 13(8):3004–3021

    Article  CAS  PubMed  Google Scholar 

  • Kwon TK, Kim J-C (2014) In vitro skin permeation and anti-atopic efficacy of lipid nanocarriers containing water soluble extracts of Houttuynia cordata. Drug Dev Ind Pharm 40(10):1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Kwon TK, Hong SK, Kim J-C (2012) In vitro skin permeation of cubosomes containing triclosan. J Ind Eng Chem 18(1):563–567

    Article  CAS  Google Scholar 

  • Lai J, Chen J, Lu Y et al (2009) Glyceryl monooleate/poloxamer 407 cubic nanoparticles as oral drug delivery systems: I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin. AAPS PharmSciTech 10(3):960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landh T (1994) Phase behavior in the system pine needle oil monoglycerides-Poloxamer 407-water at 20 degree. J Phys Chem 98(34):8453–8467

    Article  CAS  Google Scholar 

  • Landh T, Larsson K (1996) Particles, method of preparing said particles and uses thereof. Google patents

    Google Scholar 

  • Larsson K (1989) Cubic lipid-water phases: structures and biomembrane aspects. J Phys Chem 93(21):7304–7314

    Article  CAS  Google Scholar 

  • Larsson K (2000) Aqueous dispersions of cubic lipid–water phases. Curr Opin Colloid Interface Sci 5(1–2):64–69

    Article  CAS  Google Scholar 

  • Lee KW, Nguyen T-H, Hanley T et al (2009) Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. Int J Pharm 365(1–2):190–199

    Article  CAS  PubMed  Google Scholar 

  • Leser ME, Michel M, Watzke HJ (2003) Food goes nano—new horizons for food structure research. Food Colloids Biopolym Mater 284:3–13

    CAS  Google Scholar 

  • Li J-C, Zhu N, Zhu J-X et al (2015) Self-assembled cubic liquid crystalline nanoparticles for transdermal delivery of paeonol. Med Sci Monitor 21:3298

    Article  CAS  Google Scholar 

  • Lindell K, Engblom J, Engström S et al (1998) Influence of a charged phospholipid on the release pattern of timolol maleate from cubic liquid crystalline phases. In: The colloid science of lipids. Springer, pp 111–118

    Google Scholar 

  • Liu H, Wang Y, Wang Q et al (2013) Protein-bearing cubosomes prepared by liquid precursor dilution: inner ear delivery and pharmacokinetic study following intratympanic administration. J Biomed Nanotechnol 9(10):1784–1793

    Article  CAS  PubMed  Google Scholar 

  • Lombardo D, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019:3702518

    Article  CAS  Google Scholar 

  • Lutton E (1965) Phase behavior of aqueous systems of monoglycerides. J Am Oil Chem Soc 42(12):1068–1070

    Article  CAS  PubMed  Google Scholar 

  • Mansour M, Kamel A, Mansour S et al (2017) Novel polyglycerol-dioleate based cubosomal dispersion with tailored physical characteristics for controlled delivery of ondansetron. Colloids Surf B Biointerfaces 156:44–54

    Article  CAS  PubMed  Google Scholar 

  • Matloub AA, AbouSamra MM, Salama AH et al (2018) Cubic liquid crystalline nanoparticles containing a polysaccharide from Ulva fasciata with potent antihyperlipidaemic activity. Saudi Pharm J 26(2):224–231

    Article  PubMed  Google Scholar 

  • Meikle TG, Zabara A, Waddington LJ et al (2017) Incorporation of antimicrobial peptides in nanostructured lipid membrane mimetic bilayer cubosomes. Colloids Surf B Biointerfaces 152:143–151

    Article  CAS  PubMed  Google Scholar 

  • Mishra RK, Tiwari SK, Mohapatra S et al (2019) Efficient Nanocarriers for drug-delivery systems: types and fabrication. In: Nanocarriers drug delivery. Elsevier, pp 1–41

    Google Scholar 

  • Mittal D, Ali A, Md S et al (2014) Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv 21(2):75–86

    Article  CAS  PubMed  Google Scholar 

  • Montis C, Castroflorio B, Mendozza M et al (2015) Magnetocubosomes for the delivery and controlled release of therapeutics. J Colloid Interface Sci 449:317–326

    Article  CAS  PubMed  Google Scholar 

  • Morsi NM, Abdelbary GA, Ahmed MA (2014) Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: development and in vitro/in vivo characterization. Eur J Pharm Biopharm 86(2):178–189

    Article  CAS  PubMed  Google Scholar 

  • Muller F, Salonen A, Glatter O (2010) Monoglyceride-based cubosomes stabilized by Laponite: separating the effects of stabilizer, pH and temperature. Colloids Surf A Physicochem Eng Asp 358(1–3):50–56

    Article  CAS  Google Scholar 

  • Murgia S, Bonacchi S, Falchi AM et al (2013) Drug-loaded fluorescent cubosomes: versatile nanoparticles for potential theranostic applications. Langmuir 29(22):6673–6679

    Article  CAS  PubMed  Google Scholar 

  • Murgia S, Falchi AM, Meli V et al (2015) Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications. Colloids Surf B Biointerfaces 129:87–94

    Article  CAS  PubMed  Google Scholar 

  • Nasr M, Dawoud M (2016) Sorbitol based powder precursor of cubosomes as an oral delivery system for improved bioavailability of poorly water soluble drugs. J Drug Deliv Sci Technol 35:106–113

    Article  CAS  Google Scholar 

  • Nguyen TH, Hanley T, Porter CJ et al (2010) Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water soluble drugs I. Phase behaviour in physiologically-relevant media. J Pharm Pharmacol 62(7):844–855

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T-H, Hanley T, Porter CJ et al (2011) Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release 153(2):180–186

    Article  CAS  PubMed  Google Scholar 

  • Nielsen LH, Rades T, Boyd B et al (2017) Microcontainers as an oral delivery system for spray dried cubosomes containing ovalbumin. Eur J Pharm Biopharm 118:13–20

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa K, Arai H, Inoue K (1990) Scavenger receptor-mediated uptake and metabolism of lipid vesicles containing acidic phospholipids by mouse peritoneal macrophages. J Biol Chem 265(9):5226–5231

    Article  CAS  PubMed  Google Scholar 

  • Nithya R, Jerold P, Siram K (2018) Cubosomes of dapsone enhanced permeation across the skin. J Drug Deliv Sci Technol 48:75–81

    Article  CAS  Google Scholar 

  • Ostuni E, Chapman RG, Holmlin RE et al (2001) A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18):5605–5620

    Article  CAS  Google Scholar 

  • Peng X, Zhou Y, Han K et al (2015) Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des Dev Ther 9:4209

    Article  CAS  Google Scholar 

  • Pitzalis P, Monduzzi M, Krog N et al (2000) Characterization of the liquid−crystalline phases in the glycerol monooleate/diglycerol monooleate/water system. Langmuir 16(15):6358–6365

    Article  CAS  Google Scholar 

  • Rarokar NR, Khedekar PB (2018) Cubosomes: a vehicle for delivery of various therapeutic agents. MOJ Toxicol 4(1):19–21

    Google Scholar 

  • Rattanapak T, Young K, Rades T et al (2012) Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J Pharm Pharmacol 64(11):1560–1569

    Article  CAS  PubMed  Google Scholar 

  • Rizwan S, Dong Y-D, Boyd B et al (2007) Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo-field emission scanning electron microscopy (cryo-FESEM). Micron 38(5):478–485

    Article  CAS  PubMed  Google Scholar 

  • Rizwan S, Assmus D, Boehnke A et al (2011) Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. Eur J Pharm Biopharm 79(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Rosen M (2005) Delivery system handbook for personal care and cosmetic products: technology, applications and formulations. William Andrew

    Google Scholar 

  • Rosevear F (1954) The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents. J Am Oil Chem Soc 31(12):628–639

    Article  CAS  Google Scholar 

  • Sagalowicz L, Leser M, Watzke H et al (2006) Monoglyceride self-assembly structures as delivery vehicles. Trends Food Sci Technol 17(5):204–214

    Article  CAS  Google Scholar 

  • Salah S, Mahmoud AA, Kamel AO (2017) Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv 24(1):846–856

    Article  CAS  PubMed  Google Scholar 

  • Senior J (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3(2):123–193

    CAS  PubMed  Google Scholar 

  • Senior JH, Trimble KR, Maskiewicz R (1991) Interaction of positively-charged liposomes with blood: implications for their application in vivo. Biochim Biophys Acta Biomemb 1070(1):173–179

    Article  CAS  Google Scholar 

  • Shah JC, Sadhale Y, Chilukuri DM (2001) Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev 47(2–3):229–250

    Article  CAS  PubMed  Google Scholar 

  • Shen H-H, Crowston JG, Huber F et al (2010) The influence of dipalmitoyl phosphatidylserine on phase behaviour of and cellular response to lyotropic liquid crystalline dispersions. Biomaterials 31(36):9473–9481

    Article  CAS  PubMed  Google Scholar 

  • Shen H-H, Lake V, Le Brun AP et al (2013) Targeted detection of phosphatidylserine in biomimetic membranes and in vitro cell systems using annexin V-containing cubosomes. Biomaterials 34(33):8361–8369

    Article  CAS  PubMed  Google Scholar 

  • Sherif S, Bendas ER, Badawy S (2014) The clinical efficacy of cosmeceutical application of liquid crystalline nanostructured dispersions of alpha lipoic acid as anti-wrinkle. Eur J Pharm Biopharm 86(2):251–259

    Article  CAS  PubMed  Google Scholar 

  • Spicer PT, Hayden KL, Lynch ML et al (2001) Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir 17(19):5748–5756

    Article  CAS  Google Scholar 

  • Spicer PT, Small WB, Lynch ML et al (2002) Dry powder precursors of cubic liquid crystalline nanoparticles (cubosomes). J Nanopart Res 4(4):297–311

    Article  CAS  Google Scholar 

  • Spicer PT, William BSI, Lynch ML (2006) Cubic liquid crystalline compositions and methods for their preparation. Google patents

    Google Scholar 

  • Svensson O, Thuresson K, Arnebrant T (2008) Interactions between drug delivery particles and mucin in solution and at interfaces. Langmuir 24(6):2573–2579

    Article  CAS  PubMed  Google Scholar 

  • Tardieu A, Luzzati V (1970) A novel cubic phase—a cage-like network of rods with enclosed spherical micelles. Biochim Biophys Acta Biomemb 219(1):11–17

    Article  CAS  Google Scholar 

  • Tenchov B, Koynova R, Rapp G (1998) Accelerated formation of cubic phases in phosphatidylethanolamine dispersions. Biophys J 75(2):853–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Li JC, Zhu JX et al (2017) Folic acid-targeted etoposide cubosomes for theranostic application of cancer cell imaging and therapy. Med Sci Monitor 23:2426

    Article  CAS  Google Scholar 

  • Tilley AJ, Drummond CJ, Boyd BJ (2013) Disposition and association of the steric stabilizer Pluronic® F127 in lyotropic liquid crystalline nanostructured particle dispersions. J Colloid Interface Sci 392:288–296

    Article  CAS  PubMed  Google Scholar 

  • Um JY, Chung H, Kim KS et al (2003) In vitro cellular interaction and absorption of dispersed cubic particles. Int J Pharm 253(1–2):71–80

    Article  CAS  PubMed  Google Scholar 

  • Uyama M, Nakano M, Yamashita J et al (2009) Useful modified cellulose polymers as new emulsifiers of cubosomes. Langmuir 25(8):4336–4338

    Article  CAS  PubMed  Google Scholar 

  • von Halling LC, Gibson B, van de Weert M et al (2018) Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. Int J Pharm 550(1–2):35–44

    Google Scholar 

  • Wattendorf U, Merkle HP (2008) PEGylation as a tool for the biomedical engineering of surface modified microparticles. Int J Pharm 97(11):4655–4669

    CAS  Google Scholar 

  • Wei S, Ren J, Li N et al (2017) Preparation and pharmacokinetic study of fenofibrate cubic liquid crystalline. Asian J Pharm Sci 12(6):580–585

    Article  PubMed  PubMed Central  Google Scholar 

  • Wörle G, Drechsler M, Koch M et al (2007) Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. Int J Pharm 329(1–2):150–157

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Li J, Zhang Q et al (2012) A novel small Odorrana lectin-bearing cubosomes: preparation, brain delivery and pharmacodynamic study on amyloid-β25–35-treated rats following intranasal administration. Eur J Pharm Biopharm 80(2):368–378

    Article  CAS  PubMed  Google Scholar 

  • Yaghmur A, Glatter O (2009) Characterization and potential applications of nanostructured aqueous dispersions. Adv Colloid Interf Sci 147:333–342

    Article  CAS  Google Scholar 

  • Yang Z, Tan Y, Chen M et al (2012) Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability. AAPS PharmSciTech 13(4):1483–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yapar EA, Ýnal Ö (2012) Poly (ethylene oxide)–poly (propylene oxide)-based copolymers for transdermal drug delivery: an overview. Trop J Pharm Res 11(5):855–866

    CAS  Google Scholar 

  • Younes NF, Abdel-Halim SA, Elassasy AI (2018) Corneal targeted sertaconazole nitrate loaded cubosomes: preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int J Pharm 553(1–2):386–397

    Article  CAS  PubMed  Google Scholar 

  • Younus M, Hawley A, Boyd BJ et al (2018) Bulk and dispersed aqueous behaviour of an endogenous lipid, selachyl alcohol: effect of Tween 80 and Pluronic F127 on nanostructure. Colloids Surf B Biointerfaces 169:135–142

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Waddington L, Wooster TJ et al (2011) Revisiting β-casein as a stabilizer for lipid liquid crystalline nanostructured particles. Langmuir 27(24):14757–14766

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hetal P. Thakkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, B., Thakkar, H.P. (2021). Cubosomes: Novel Nanocarriers for Drug Delivery. In: Shah, N. (eds) Nanocarriers: Drug Delivery System. Springer, Singapore. https://doi.org/10.1007/978-981-33-4497-6_9

Download citation

Publish with us

Policies and ethics