Skip to main content

Bioethanol Extraction and Its Production from Agricultural Residues for Sustainable Development

  • Chapter
  • First Online:
Waste to Energy: Prospects and Applications

Abstract

Bioethanol is a reasonable alternative option, its generation from readily available in an enormous amount and eco-friendly bio-resources, i.e., agricultural residues, one of the most suitable and renewable alternative options in place of fossils fuels resources, which being to deplete in an upcoming day. According to the recent statistical analysis report of Economic Co-operation and Development (OECD) and the Food and Agriculture Organization (FAO), for the 2017–2026 year, discussed the cereal feedstocks availability like Wheat and Rice across the world for biofuel production. Wheat and rice cereal cops contribute approximately, 742 Mt and 495 Mt million hectares annually, instead of other cereal crop residues such as Pearl millet (Pennisetum glaucum), Barley (Hordeum vulgare), Gram pea (Cicer arietinum), Sugarcane (Saccharum officinarum), and Great millet (Sorghum vulgare), abundantly available in Asian countries only. Instead of agricultural residues, municipal sewage waste (MSW) can also be utilized as organic biomass for bioethanol production in Mediterranean countries. As per advanced technologies concern, all of these are described in this chapter, they are direct combustion, combustion after physical processing, thermo-chemical and biological processing followed by the simultaneous saccharification and co-fermentation (SSCF) and consolidated bioprocessing (CBP). In addition, other applications of recycled wastes were also discussed. The foremost aim of the chapter was too focused on the latest development with respect to technologies related to the biofuel sector and sustainable development of the agricultural sector as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeshahian P, Dashti MG, Kalil MS, Yusoff WMW (2010) Production of biofuel using biomass as a sustainable biological resource. Biotechnology 9(3):274–282

    Article  CAS  Google Scholar 

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renewable Sustainable Energy Rev 66:631–653

    Article  CAS  Google Scholar 

  • Ahuja D, Kaushik A, Singh M (2018) Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pretreatment. Int J Biol Macromol 107:1294–1301. https://doi.org/10.1016/j.ijbiomac.2017.09.107

    Article  CAS  PubMed  Google Scholar 

  • Aithani D, Mohanty AK (2006) Value-added new materials from byproduct of corn based ethanol industries: blends of plasticized corn gluten meal and poly (ε-caprolactone). Indian Eng Chem Res 45(18):6147–6152

    Article  CAS  Google Scholar 

  • Almeida LGF et al (2019) Composition and growth of sorghum biomass genotypes for ethanol production. Biomass Bioenergy 122:343348. https://doi.org/10.1016/j.biombioe.2019.01.030

    Article  CAS  Google Scholar 

  • Alonso E (2018) The role of supercritical fluids in the fractionation pretreatments of a wheat bran-based biorefinery. J Supercrit Fluids 133:603–614. https://doi.org/10.1016/j.supflu.2017.09.010

    Article  CAS  Google Scholar 

  • Amartey S, Jeffries TW (1994) Comparison of corn steep liquor with other nutrients in the fermentation of D-xylose by Pichia stipitis CBS 6054. Biotech Lett 16(2):211–214

    Article  CAS  Google Scholar 

  • De Azeredo L, De Lima MB, Coelho RRR, Freire DMG (2006) A low-cost fermentation medium for thermophilic protease production by Streptomyces sp. 594 using feather meal and corn steep liquor. Curr Microbiol 53(4):335

    Article  CAS  PubMed  Google Scholar 

  • Bahl KB, Lisboa CC, Mauder M, Kiesegcb R (2011) Bioethanol production from sugarcane and emissions of greenhouse gases – known and unknowns. Bioenergy 3:277–292

    Google Scholar 

  • Bertero M, de la Puente G, Sedran U (2012) Fuels from bio-oils: bio-oil production from different residual sources, characterization and thermal conditioning. Fuel 95:263–271

    Article  CAS  Google Scholar 

  • Bhat AR (2019) In: Qadri H, Wani KA, Dar GH, Mehmood MA (eds) Innovative waste management technologies for sustainable development, 1st edn. IGI Global publisher, Egypt, pp 284–372

    Google Scholar 

  • Bhatia L, Chandel AK, Singh AK, Singh OV (2018) Biotechnological Advances in Lignocellulosic Ethanol Production. In: Singh O, Chandel A (eds) Sustainable biotechnology enzyme resource of renewable energy. Springer, Cham

    Google Scholar 

  • Bhattacharya, S.C., Pham, H.L., Shrestha, R.M., et al. (1993). CO2 emissions due to fossil and traditional fuels, residues and wastes in Asia. In: Workshop on Global Warming Issues in Asia. Asian Inst of Technology, Bangkok.

    Google Scholar 

  • Biederbeck VO, Campbell CA, Bowren KE, Schnitzer M, McIver RN (1980) Effect of burning cereal straw on soil properties and grain yield in Saskatchewan. Soil Sci Soc Am J 44:103–111

    Article  CAS  Google Scholar 

  • Borrion AL, McManus MC, Hammond GP (2012) Environmental life cycle assessment of lignocellulosic conversion to ethanol. Renewab Sustain Energy Rev 16(7):4638–4650

    Article  CAS  Google Scholar 

  • Brumbley SM et al (2007) Developing the sugarcane biofactory for high-value biomaterials. Int Sugar J 1297:5

    Google Scholar 

  • Carrillo I, Mendonca RT, Ago M, Rojas OJ (2018) Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose 25:1011–1029. https://doi.org/10.1007/s1057m0-018-1653-2

    Article  CAS  Google Scholar 

  • Carrillo ND et al (2019) Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renewab Sustain Energy Rev 102:63–74

    Article  CAS  Google Scholar 

  • Chauhan BS, Mahajan G, Sardana V, Timsina J, Jat MI (2012) Productivity and sustainability of the rice-wheat cropping system in the indo-gangetic plains of the Indian subcontinent problems, opportunities, and strategies. Adv Agron 117:315–369

    Article  CAS  Google Scholar 

  • Das CR, Ghatnekar P (1979). Replacement of cowdung by fermentation of aquatic and terrestrial plants for use as fuel, fertilizer and biogas plant feed. In: TERI technical report. TERI; December.

    Google Scholar 

  • Davis SC, Hay W, Pierce J (2014) Biomass in the energy industry: an introduction. BP p.l.c, London, UK

    Google Scholar 

  • Demirbas A (2009) Fuels from biomass, Biohydrogen, green energy and technology. Springer, London, pp 43–59

    Google Scholar 

  • Diaz AB et al (2015) Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour Technol 185:316–323

    Article  CAS  PubMed  Google Scholar 

  • Federation of Indian Chambers of Commerce and Industry Price water house Coo Report (2013). Forging ties securing energy supply for a stronger economy. ECN - Phyllis2 Database for biomass and waste (www.ecn.nl/phyllis2) https://www.pwc.in/assets/pdfs/publications/2013/forging-ties-securing-energy-supply-for-a-stronger-economy.pdf

  • Franks CD, Burow GB, Burke JJ (2006) A comparison of US and Chinese sorghum germplasm for early season cold tolerance. Crop Sci 46:1371–1376

    Article  Google Scholar 

  • Ganguly P, Sengupta S, Das P, Bhowal A (2020) Synthesis of Cellulose from Peanut Shell Waste and Its Use in Bioethanol Production. In: Ghosh S, Sen R, Chanakya H, Pariatamby A (eds) Bioresource utilization and bioprocess. Springer, Singapore

    Google Scholar 

  • Ganjyal GM, Reddy N, Yang YQ, Hanna MA (2004) Biodegradable packaging foams of starch acetate blended with corn stalk fibers. J Appl Polym Sci 93(6):2627–2633

    Article  CAS  Google Scholar 

  • Garcia CMT, Gonzalez BG, Indacoechea I, Coca M (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100:1608–1613

    Article  CAS  Google Scholar 

  • Gaurav N, Sivasankari S, Kiran G, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: A Review. Renewab Sustainab 73:205–214. https://doi.org/10.1016/j.rser.2017.01.070

    Article  CAS  Google Scholar 

  • Geng W et al (2019) The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass. Cellulose 26:3219–3230. https://doi.org/10.1007/s10570-019-02261-y

    Article  CAS  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues. Renewab Sustain Energy Rev 41:550–567

    Article  CAS  Google Scholar 

  • Hadar Y (2013) Sources for lignocellulosic raw materials for the production of ethanol. In: Faraco V (ed) Lignocellulose conversion. Springer, Berlin, pp 21–38

    Chapter  Google Scholar 

  • Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renewab Sustainab Energy Rev 32:504–512

    Article  Google Scholar 

  • Hysek S, Podlena M, Bartsch H, Wenderdel C, Bohm M (2018) Effect of wheat husk surface pretreatment on the properties of husk-based composite materials, Indus. Crops Prod 125(2018):105–113. https://doi.org/10.1016/j.indcrop.2018.08.035

    Article  CAS  Google Scholar 

  • Iqbal HMN, Nieves DC, Sara Hernandez S, Soto GG, Magdalena RA, Carlos HL, Alejandro JA, Parra-Saldívar R (2019) Biotransformation of agro-industrial waste to produce lignocellulolytic enzymes and bioethanol with a zero waste. Biomass Convers Biorefin

    Google Scholar 

  • Jerez A, Partal P, Martinez I, Gallegos C, Guerrero A (2005) Rheology and processing of gluten-based bioplastics. Biochem Eng J 26(2):131–138

    Article  CAS  Google Scholar 

  • Joshi SJ, Ingale S, Gupte A (2014) Production of bioethanol using agricultural waste: Banana pseudo stem. Braz J Microbiol 45(3):885–892

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapadia, K., Agrawal, A., Sharma, H. & Malviya, N. (2019). India’s Renewable Energy Potential: A Review, SSRN Proceedings of L 10th International Conference on Digital Strategies for Organizational Success 1550-1559.

    Google Scholar 

  • Katyal S (2007) Effect of Carbonization Temperature on Combustion Reactivity of Bagasse Char. Energy Sources Part A 29(16):1477–1485

    Article  CAS  Google Scholar 

  • Kılıc AD, Ozbek B (2007) Hydrolysis and solubilization of corn gluten by Neutrase. J Chem Technol Biotechnol 82(12):1107–1114

    Article  CAS  Google Scholar 

  • Kim JM, Whang JH, Kim KM, Koh JH, Hyung JS (2004) Preparation of corn gluten hydrolysate with angiotensin I converting enzyme inhibitory activity and its solubility and moisture sorption. Process Biochem 39(8):989–994

    Article  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009) Does change in accessibility with conversion depend on both the substrate and pretreatment technology. Bioresour Technol 100:4193–4202

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renewab Sustain Energy Rev 45:530–539. https://doi.org/10.1016/j.rser.2015.02.007

    Article  Google Scholar 

  • Kumar A, Singh J, Baskar C (2019) Lignocellulosic biomass for bioethanol production through microbes: strategies to improve process efficiency. In: Prospects of renewable bioprocessing in future energy systems, pp 357–386

    Chapter  Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewab Sustain Energy Rev 90:877–891. https://doi.org/10.1016/j.rser.2018.03.111

    Article  CAS  Google Scholar 

  • Laca A, Laca A, Diaz M (2019) Hydrolysis: from cellulose and hemicellulose to simple sugars. Elsevier, Spain

    Google Scholar 

  • Lakaniemi AM, Tuovinen OH, Puhakka JA (2013) Anaerobic conversion of microalgal biomass to sustainable energy carriers–a review. Bioresour Technol 135:222–231

    Article  CAS  PubMed  Google Scholar 

  • Li W, Loh KC, Zhang J, Tong YW, Dai Y (2018) Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system. Appl Energy 209:400–408. https://doi.org/10.1016/j.apenergy.2017.05.042

    Article  CAS  Google Scholar 

  • Lin Y et al (2019) Characterization of dietary fiber from wheat bran (Triticumaestivum L.) and its effect on the digestion of surimi protein. LWT Food Sci Technol 102:106–112. https://doi.org/10.1016/j.lwt.2018.12.024

    Article  CAS  Google Scholar 

  • Lisboa CC, Bahl KB, Mauder M, Kiese R (2011) Bioethanol production from sugarcane and emissions of greenhouse gases-known and unknowns. Bioenergy 3(4):277–292

    CAS  Google Scholar 

  • Liu Z, Li L, Liu C, Xu A (2018) Pretreatment of corn straw using the alkaline solution of ionic liquids. Bioresour Technol 260:417–420. https://doi.org/10.1016/j.biortech.2018.03.117

    Article  CAS  PubMed  Google Scholar 

  • Mancini G, Papirio S, Riccardelli G, Lens PNL, Esposito G (2018a) Trace elements dosing and alkaline pretreatment in the anaerobic digestion of rice straw. Bioresour Technol 247:897–903. https://doi.org/10.1016/j.biortech.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  • Mancini G, Papirio S, Lens PNL, Esposito G (2018b) Increased biogas production from wheat straw by chemical pretreatments. Renewable Energy 119:608–614. https://doi.org/10.1016/j.renene.2017.12.045

    Article  CAS  Google Scholar 

  • Mariano AP et al (2013) Utilization of pentose from sugarcane biomass: Techno-economics of biogas vs. butanol production. Bioresour Technol 14:390–399

    Article  CAS  Google Scholar 

  • Matsakas L, Qiuju G, Stina J, Ulrika R, Paul C (2017) Green conversion of municipal solid wastes into fuels and chemicals. Electron J Biotechnol 26:69–83

    Article  Google Scholar 

  • MNES. In: Ministry of non-conventional energy sources. Government of India, B-14, CGO complex, Lodhi Road, New Delhi, India; 1996.

    Google Scholar 

  • Nass LL, Pereira PAA, Ellis D (2007) Biofuels in Brazil: an overview. Crop Sci 47(6):2228–2237

    Article  Google Scholar 

  • Negi S, Dhar H, Hussain A, Kumar S (2018) Bio-methanation potential for co-digestion of municipal solid waste and rice straw: a batch study. Bioresour Technol 254:139–144

    Article  CAS  PubMed  Google Scholar 

  • Nel S (2010) The potential of biotechnology in the sugarcane industry: are you ready for the next evolution? Int Sugar J 112(1333):11

    CAS  Google Scholar 

  • Neves MA, Kimura T, Shimizu N, Nakajima M (2007) State of the art and future trends of bioethanol production, dynamic biochemistry, process biotechnology and molecular biology. Global Science Books, New Delhi, India, pp 1–13

    Google Scholar 

  • Nilsson D, Rosenqvist H, Bernesson S (2015) Profitability of the production of energy grasses on marginal agricultural land in Sweden. Biomass Bioenergy 83:159–168

    Article  Google Scholar 

  • Packiam M et al (2018) Suitability of pearl millet as an alternate lignocellulosic feedstock for biofuel production in India. J Appl Environ Microbiol 6(2):51–58. https://doi.org/10.12691/jaem-6-2-4

    Article  CAS  Google Scholar 

  • Panamgama AL, Peramune PRUSK (2018) Coconut coir pith lignin: A physicochemical and thermal characterization. Int J Biol Macromol 113:1149–1157. https://doi.org/10.1016/j.ijbiomac.2018.03.012

    Article  CAS  Google Scholar 

  • Parisutham V, Kim TH, Lee SK (2014) Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour Technol 161:431–440. https://doi.org/10.1016/j.biortech.2014.03.114

    Article  CAS  PubMed  Google Scholar 

  • Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity relating pH to biomatrix opening. New Biotech 27(6):739–750

    Article  CAS  Google Scholar 

  • Picot P, Morizet J, Cruiziat P, Chatenoud J, Leclercq P (1984) Improvement of drought resistance in sunflower by interspecific crossing with a wild species Helianthus argophyllus. Methodology and first results [selection, net assimilation, transpiration, stomata, water potential, wilt; Helianthus annuus]. Agronomie 4(6)

    Google Scholar 

  • Popa VI (2018) Biomass for fuels and biomaterials, Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value. Elsevier, Romania, pp 1–37. https://doi.org/10.1016/b978-0-444-63774-1.00001-6

    Book  Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recyc 2007:501–539

    Google Scholar 

  • Queiros CSGP et al (2020) Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Convers Biorefin 10:175–188. https://doi.org/10.1007/s13399-019-00424-2

    Article  CAS  Google Scholar 

  • Rattanaporn K, Tantayotai P, Phusantisampan T, Pornwongthong P, Sriariyanun M (2018) Organic acid pretreatment of oil palm trunk: effect on enzymatic saccharification and ethanol production. Bioprocess Biosyst Eng 41(4):467–477. https://doi.org/10.1007/s00449-017-1881-0

    Article  CAS  PubMed  Google Scholar 

  • Robak K, Balcerek M, Dziekońska-Kubczak U, Dziugan P (2019) Effect of Dilute Acid Pretreatment on the Saccharification and Fermentation of Rye Straw. Biotech Prog 35(e2789):1–6. https://doi.org/10.1002/btpr.2789

    Article  CAS  Google Scholar 

  • Samarasinghe S, Easteal AJ, Edmonds NR (2008) Biodegradable plastic composites from corn gluten meal. Polym Int 57(2):359–364

    Article  CAS  Google Scholar 

  • Saini A, Neeraj KA, Anuja S, Anita Y (2015) Prospects for irradiation in cellulosic ethanol production. Biotechnol Res Int 13

    Google Scholar 

  • Sengupta M, Poddar A (2013) National policy on biofuel under the scanner. Int J Emerg Tech Adv Eng 3:521–526

    Google Scholar 

  • Shafya HIA, Mansour MSM (2018) Solid waste issue: sources, composition, disposal, recycling, and valorization. Egypt J Pet 27(4):1275–1290

    Article  Google Scholar 

  • Shah MA, Khan MNS, Kumar V (2018) Biomass residue characterization for their potential application as biofuels. J Therm Analytes Calorimetry 134:2137–2145

    Article  CAS  Google Scholar 

  • Shen, et al. (2019) Effect of production temperature on lead removal mechanisms by rice straw biochars. Sci Total Environ 655(2019):751–758. https://doi.org/10.1016/j.scitotenv.2018.11.282

  • Shinoj P, Raju SS, Joshi PK (2011) India’s biofuel production programme: need for prioritizing the alternative options. Indian J Agric Sci 81:391–397

    Google Scholar 

  • Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Indian Crops Prod 13(3):171–192

    Article  CAS  Google Scholar 

  • Singh, Y., (2008). Waste biomass to energy, environment and waste management, Reprint Series No. 1/99-PC. http://planningcommission.nic.in/reports/wrkpapers/wp_lease.pdf.%20www.wealthywaste.com/wastebiomass-to-energy

  • Smith LG, Kirk GJD, Jones PJ, William AG (2019) The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat Commun 10:4641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava N et al (2019) Sustainable approaches for biofuels production technologies: from current status to practical implementation, vol 7, 1st edn. Springer, Cham, pp 1–31

    Book  Google Scholar 

  • Stocker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47(48):9200–9211

    Article  CAS  Google Scholar 

  • Sudiyani Y, Sembiring KC, Adilina IB (2014) Bioethanol G2: production process and recent studies. In: Biomater bioenergy. Springer, Cham, pp 345–364

    Google Scholar 

  • Sugathapala, A.G.T., & Surya, P.C. (2013). Technologies for converting waste agricultural biomass to energy, United Nations Environmental Programme, Division of Technology, Industry and Economics International Environmental Technology Centre, Osaka, Japan.

    Google Scholar 

  • Sukiran MA, Abnisa F, Wan Daud WMA et al (2017) A review of torrefaction of oil palm solid wastes for biofuel production. Energy Convers Manag 149(Supplement C):101–120

    Article  CAS  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    Article  CAS  PubMed  Google Scholar 

  • Tian SQ, Zhao RY, Chen ZC (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renewab Sustainab Energy Rev 91:483489. https://doi.org/10.1016/j.rser.2018.03.113

    Article  CAS  Google Scholar 

  • Tsegayea B, Balomajumdera C, Roy P (2019) Optimization of microwave and NaOH pretreatments of wheat straw for enhancing biofuel yield. Energy Convers Manag 186:82–92. https://doi.org/10.1016/j.enconman.2019.02.049

    Article  CAS  Google Scholar 

  • Tucker MP, Kim KH, Newman MM, Nguyen QA (2003) Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility. Appl Biochem Biotechnol 10:105–108

    Google Scholar 

  • Vandenbossche VE et al (2014) A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder. Indian Crops Prod 55:258–266

    Article  CAS  Google Scholar 

  • Williams, T.O., Fernandez RS & Kelley TG. (1997). The influence of socio- economic factors on the availability and utilization of crop residues as animal feeds. In: Renard, C. editor. Crop residues in sustainable mixed crop/livestock farming systems. CAB International and ICRISAT. http://ilri.org/InfoServ/Webpub/fulldocs/CropResidues/chap%202.html

  • Xin L et al (2018) Feasibility of anaerobic digestion for contaminated rice straw inoculated with waste activated sludge. Bioresour Technol 266:45–50. https://doi.org/10.1016/j.biortech.2018.06.048

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M (2017) Agro-industrial waste materials and their recycled value-added applications: review. In: Handbook of ecomaterials. Springer, Cham, pp 1–11

    Google Scholar 

  • Ziolkowska JR, Simon L (2014) Recent developments and prospects for algae-based fuels in the US. Renew Sustain Energy Rev 29:847–853

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katiyar, P., Srivastava, S.K., Kushwaha, D. (2020). Bioethanol Extraction and Its Production from Agricultural Residues for Sustainable Development. In: Kashyap, B.K., Solanki, M.K., Kamboj, D.V., Pandey, A.K. (eds) Waste to Energy: Prospects and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-33-4347-4_7

Download citation

Publish with us

Policies and ethics