Skip to main content

Microalgae: Omics Approaches for Biofuel Production and Biomedical Research

  • Chapter
  • First Online:
Waste to Energy: Prospects and Applications

Abstract

Rapidly emerging countries like India and China are lifting millions of people out of poverty. This perpendicular growth in the number of people demanding access to reliable and affordable energy will drive energy demand in the decades to come. Much effort has been employed toward optimizing microbes and predominantly microalgae, to resourcefully produce compounds that can be substitute for fossil fuels. Oils acquired from algal feedstock are rich in triacylglycerols and could be converted into biodiesel via transesterification. Apart from the triacylglycerols and carbohydrates which are predominant in microalgae, there are several biomolecules like pigments and vitamins which play crucial role in pharmaceutical industries. There is an urgent need to understand which drives the production of such economic important biofuels or chemicals to improve the sustainability of the process. Integrative omics is a strong technique to know the complete system of microalgae and develop as microbial cell factories. Genomics and transcriptomics of microalgae have provided basic understanding toward lipid biosynthesis. Proteomics and metabolomics are now complementing “microalgal omics” and offer accurate functional insights into the attendant static and dynamic physiological contexts. Current chapter focuses on the application of omics approaches which considered powerful tools for a better understanding of algae cells metabolism. Then, the data would be used to develop sustainable strategies for biodiesel and by-products yield and quality improvement and a profitable microalgae industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altelaar AM, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35

    Article  CAS  PubMed  Google Scholar 

  • Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD (2016) Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci Rep 6:1–13

    Article  CAS  Google Scholar 

  • Arora N, Pienkos PT, Pruthi V, Poluri KM, Guarnieri MT (2018) Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnol Adv 36(4):1274–1292

    Article  CAS  PubMed  Google Scholar 

  • Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH (2017) Proteomics: technologies and their applications. J Chromatogr Sci 55:182–196

    Article  CAS  PubMed  Google Scholar 

  • Awad D, Brueck T (2020) Optimization of protein isolation by proteomic qualification from Cutaneotrichosporon oleaginosus. Anal Bioanal Chem 412:449–462

    Article  CAS  PubMed  Google Scholar 

  • Baek J, Choi J-i, Park H, Lim S, Park SJ (2016) Isolation and proteomic analysis of a Chlamydomonas reinhardtii mutant with enhanced lipid production by the gamma irradiation method. J Microbiol Biotechnol 26:2066–2075

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Song H, Lavoie M, Zhu K, Su Y, Ye H, Chen S, Fu Z, Qian H (2016) Proteomic study bring new insights into the effect of a dark stress on lipid synthesis in P tricornutum. Sci Rep 6:1–10

    Article  CAS  Google Scholar 

  • Barh D, Zambare V, Azevedo V (2013) Omics: applications in biomedical, agricultural, and environmental sciences. CRC Press, New York

    Book  Google Scholar 

  • Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids1. J Phycol 21:72–81

    Article  CAS  Google Scholar 

  • Betzen C, Alhamdani MSS, Lueong S, Schröder C, Stang A, Hoheisel JD (2015) Clinical proteomics: promises, challenges and limitations of affinity arrays. Proteomics–Clin Appl 9:342–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingol K (2018) Recent advances in targeted and untargeted metabolomics by NMR and MS/NMR methods. High-throughput 7:9

    Article  CAS  PubMed Central  Google Scholar 

  • Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6:33

    Article  PubMed Central  CAS  Google Scholar 

  • Brogan J, Li F, Li W, He Z, Huang Q, Li C-Y (2012) Imaging molecular pathways: reporter genes. Radiat Res 177:508–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruderer R, Bernhardt OM, Gandhi T, Xuan Y, Sondermann J, Schmidt M, Gomez-Varela D, Reiter L (2017) Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol Cell Proteomics 16(12):2296–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterfield DA, Perluigi M (2017) Redox proteomics: a key tool for new insights into protein modification with relevance to disease. Antioxid Redox Signal 26(7):277–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandramouli K, Qian P-Y (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. HGP 2009:239204

    PubMed  Google Scholar 

  • Chernobrovkin A, Vicente CM, Visa N, Zubarev RA (2014) Expression proteomics reveals protein targets and highlights mechanisms of action of small molecule drugs. Sct Rep 5:11176

    Article  Google Scholar 

  • Cooper MB, Smith AG (2015) Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol 26:147–153

    Article  PubMed  Google Scholar 

  • Cornett EM, Dickson BM, Krajewski K, Spellmon N, Umstead A, Vaughan RM, Shaw KM, Versluis PP, Cowles MW, Brunzelle J (2018) A functional proteomics platform to reveal the sequence determinants of lysine methyltransferase substrate selectivity. Sci Adv 4:eaav2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deidda M, Piras C, Bassareo PP, Dessalvi CC, Mercuro G (2015) Metabolomics, a promising approach to translational research in cardiology. IJC Metabolic Endocrine 9:31–38

    Article  Google Scholar 

  • Doron L, Segal Na, Shapira M (2016) Transgene expression in microalgae—from tools to applications. Front Plant Sci 7:505

    Article  PubMed  PubMed Central  Google Scholar 

  • Feist P, Hummon AB (2015) Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int J Mol Sci 16:3537–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillham NW, Boynton JE, Hauser CR (1994) Translational regulation of gene expression in chloroplasts and mitochondria. Annu Rev Genet 28:71–93

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Li H, Zhao P, Yu R, Pan G, Gao S, Xie X, Huang A, He L, Wang G (2014) Quantitative proteomic analysis of thylakoid from two microalgae (Haematococcus pluvialis and Dunaliella salina) reveals two different high light-responsive strategies. Sci Rep 4:6661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnieri MT, Pienkos PT (2015) Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res 123:255–263

    Article  CAS  PubMed  Google Scholar 

  • Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6:e25851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawrot-Paw M, Koniuszy A, Gałczyńska M, Zając G, Szyszlak-Bargłowicz J (2020) Production of microalgal biomass using aquaculture wastewater as growth medium. Watermark 12:106

    Article  CAS  Google Scholar 

  • Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G (2012) The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol 158:299–312

    Article  CAS  PubMed  Google Scholar 

  • Illman A, Scragg A, Shales S (2000) Increase in chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  CAS  PubMed  Google Scholar 

  • Irrgang A, Weise C, Murugaiyan J, Roesler U (2015) Identification of immunodominant proteins of the microalgae Prototheca by proteomic analysis. New Microb New Infect 3:37–40

    Article  CAS  Google Scholar 

  • Ismaiel MM, Piercey-Normore MD, Rampitsch C (2018) Proteomic analyses of the cyanobacterium Arthrospira (spirulina) platensis under iron and salinity stress. Environ Exp Bot 147:63–74

    Article  CAS  Google Scholar 

  • Kageyama H, Tanaka Y, Shibata A, Waditee-Sirisattha R, Takabe T (2018) Dimethylsulfoniopropionate biosynthesis in a diatom Thalassiosira pseudonana: identification of a gene encoding MTHB-methyltransferase. Arch Biochem Biophys 645:100–106

    Article  CAS  PubMed  Google Scholar 

  • KaiXian Q, Borowitzka MA (1993) Light and nitrogen deficiency effects on the growth and composition ofPhaeodactylum tricornutum. Appl Biochem Biotechnol 38:93–103

    Article  Google Scholar 

  • Kim Y, Yoo W, Lee S, Lee M (2005) Proteomic analysis of cadmium-induced protein profile alterations from marine alga Nannochloropsis oculata. Ecotoxicology 14:589–596

    Article  CAS  PubMed  Google Scholar 

  • Lauritano C, Ferrante MI, Rogato A (2019) Marine natural products from microalgae: an-omics overview. Mar Drugs 17:269

    Article  CAS  PubMed Central  Google Scholar 

  • Le Bihan T, Martin SF, Chirnside ES, van Ooijen G, Barrios-LLerena ME, O'Neill JS, Shliaha PV, Kerr LE, Millar AJ (2011) Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri. J Proteomics 74:2060–2070

    Article  PubMed  CAS  Google Scholar 

  • Lopes H, Rocha I (2017) Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Res 17:50

    Article  CAS  Google Scholar 

  • Maghembe R, Damian D, Makaranga A, Nyandoro SS, Lyantagaye SL, Kusari S, Hatti-Kaul R (2020) Omics for bioprospecting and drug discovery from bacteria and microalgae. Antibiotics 9:229

    Article  CAS  PubMed Central  Google Scholar 

  • Manjasetty BA, Büssow K, Panjikar S, Turnbull AP (2012) Current methods in structural proteomics and its applications in biological sciences. 3 Biotech 2:89–113

    Article  Google Scholar 

  • Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, Ferrari R (2016) Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform 19:286–302

    Article  PubMed Central  CAS  Google Scholar 

  • Meisburger SP, Thomas WC, Watkins MB, Ando N (2017) X-ray scattering studies of protein structural dynamics. Chem Rev 117:7615–7672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller R, Wu G, Deshpande RR, Vieler A, Gärtner K, Li X, Moellering ER, Zäuner S, Cornish AJ, Liu B (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mnatsakanyan R, Shema G, Basik M, Batist G, Borchers CH, Sickmann A, Zahedi RP (2018) Detecting post-translational modification signatures as potential biomarkers in clinical mass spectrometry. Expert Rev Proteomics 15:6

    Article  CAS  Google Scholar 

  • Montecinos AE, Couceiro L, Peters AF, Desrut A, Valero M, Guillemin ML (2017) Species delimitation and phylogeographic analyses in the Ectocarpus subgroup siliculosi (Ectocarpales, Phaeophyceae). J Phycol 53:17–31

    Article  CAS  PubMed  Google Scholar 

  • Naumann B, Busch A, Allmer J, Ostendorf E, Zeller M, Kirchhoff H, Hippler M (2007) Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics 7:3964–3979

    Article  CAS  PubMed  Google Scholar 

  • Niizawa I, Espinaco BY, Leonardi JR, Heinrich JM, Sihufe GA (2018) Enhancement of astaxanthin production from Haematococcus pluvialis under autotrophic growth conditions by a sequential stress strategy. Prep Biochem Biotechnol 48:528–534

    Article  CAS  PubMed  Google Scholar 

  • Niu L, Zhang H, Wu Z, Wang Y, Liu H, Wu X, Wang W (2018) Modified TCA/acetone precipitation of plant proteins for proteomic analysis. PLoS One 13:e0202238

    Article  PubMed  PubMed Central  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefin 3:431–440

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3:686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rai V, Karthikaichamy A, Das D, Noronha S, Wangikar PP, Srivastava S (2016) Multi-omics frontiers in algal research: techniques and progress to explore biofuels in the postgenomics world. Omics: J Integr Biol 20:387–399

    Article  CAS  Google Scholar 

  • Rashidi B, Dechesne A, Rydahl MG, Jørgensen B, Trindade LM (2019) Neochloris oleoabundans cell walls have an altered composition when cultivated under different growing conditions. Algal Res 40:101482

    Article  Google Scholar 

  • Rastogi RP, Pandey A, Larroche C, Madamwar D (2018) Algal Green Energy–R&D and technological perspectives for biodiesel production. Renew Sustain Energy Rev 82:2946–2969

    Article  CAS  Google Scholar 

  • Rauniyar N (2015) Parallel reaction monitoring: a targeted experiment performed using high resolution and high mass accuracy mass spectrometry. Int J Mol Sci 16:28566–28581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reen CS, Wayne CK, Loke SP, Manickam S, Chuan LT, Yang T (2019) Isolation of protein from Chlorella sorokiniana CY1 using liquid biphasic flotation assisted with sonication through sugaring-out effect. J Oceanol Limnol 37:898–908

    Article  CAS  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salama E-S, Govindwar SP, Khandare RV, Roh H-S, Jeon B-H, Li X (2019) Can omics approaches improve microalgal biofuels under abiotic stress? Trends Plant Sci 24:611–624

    Article  CAS  PubMed  Google Scholar 

  • Sasso S, Stibor H, Mittag M, Grossman AR (2018) The natural history of model organisms: from molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature. Elife 7:e39233

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaum CE (2019) Enhanced biofilm formation aids adaptation to extreme warming and environmental instability in the diatom Thalassiosira pseudonana and its associated bacteria. Limnol Oceanogr 64:441–460

    Article  Google Scholar 

  • Schmidt M, Geßner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reißenweber T, Voytsekh O (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18:1908–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirikhachornkit A, Suttangkakul A, Vuttipongchaikij S, Juntawong P (2018) De novo transcriptome analysis and gene expression profiling of an oleaginous microalga Scenedesmus acutus TISTR8540 during nitrogen deprivation-induced lipid accumulation. Sci Rep 8:3668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoffels L, Finlan A, Mannall G, Purton S, Parker BM (2019) Downstream processing of Chlamydomonas reinhardtii TN72 for recombinant protein recovery. Front Bioeng Biotechnol 7:383

    Article  PubMed  PubMed Central  Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci 110:19748–19753

    Article  CAS  PubMed  Google Scholar 

  • Trifonova O, Lokhov P, Archakov A (2013) Postgenomics diagnostics: metabolomics approaches to human blood profiling. Omics: J Integr Biol 17:550–559

    Article  CAS  Google Scholar 

  • Umen JG, Olson BJ (2012) Genomics of volvocine algae. In: Advances in botanical research. Elsevier, Amsterdam, pp 185–243

    Google Scholar 

  • Ummalyma SB (2020) Bioremediation and biomass production of microalgae cultivation in river watercontaminated with pharmaceutical effluent. Bioresour Technol 307:123233

    Article  PubMed  CAS  Google Scholar 

  • Van Emon JM (2016) The omics revolution in agricultural research. J Agric Food Chem 64:36–44

    Article  PubMed  CAS  Google Scholar 

  • Vladareanu L, Iliescu M, Wang H, Yongfei F, Vladareanu V, Yu H, Smarandache F (2016) CSP and “omics” technology apllied on versatile and intelligent portable platform for modeling complex bio-medical data. In: 2016 international conference on advanced mechatronic systems (ICAMechS), pp 423–428

    Google Scholar 

  • Waghmare AG, Salve MK, LeBlanc JG, Arya SS (2016) Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresour Bioprocess 3:16

    Article  Google Scholar 

  • Walsh AM, Crispie F, Claesson MJ, Cotter PD (2017) Translating omics to food microbiology. Annu Rev Food Sci Technol 8:113–134

    Article  PubMed  Google Scholar 

  • Wang D-Z, Zhang H, Zhang Y, Zhang S-F (2014) Marine dinoflagellate proteomics: current status and future perspectives. J Proteomics 105:121–132

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Fan J, Wang Q (2019) Omics application of bio-hydrogen production through green alga Chlamydomonas reinhardtii. Front Bioeng Biotechnol 7:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Wang W, Wei H, Van Wychen S, Pienkos PT, Zhang M, Himmel ME (2016) Comparison of nitrogen depletion and repletion on lipid production in yeast and fungal species. Energies 9:685

    Article  CAS  Google Scholar 

  • Yao L, Tan KWM, Tan TW, Lee YK (2017) Exploring the transcriptome of non-model oleaginous microalga Dunaliella tertiolecta through high-throughput sequencing and high performance computing. BMC bioinformatics 18:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu K-H, Snyder M (2016) Omics profiling in precision oncology. Mol Cell Proteomics 15:2525–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zainul Azlan N, Yusof M, Anum Y, Alias E, Makpol S (2019) Chlorella vulgaris improves the regenerative capacity of young and senescent myoblasts and promotes muscle regeneration. Oxid Med Cell Longev 2019:3520789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhila NO, Kalacheva GS, Volova TG (2005) Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. J Appl Phycol 17:309–315

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Shukla, S., Singh, R.P. (2020). Microalgae: Omics Approaches for Biofuel Production and Biomedical Research. In: Kashyap, B.K., Solanki, M.K., Kamboj, D.V., Pandey, A.K. (eds) Waste to Energy: Prospects and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-33-4347-4_11

Download citation

Publish with us

Policies and ethics