Skip to main content

The Variations of Metabolic Detoxification Enzymes Lead to Recurrent Miscarriage and Their Diagnosis Strategy

  • Chapter
  • First Online:
Environment and Female Reproductive Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1300))

Abstract

Spontaneous abortion has been a common obstetrical and gynecological disease, which occurs in 10–15% of all pregnancies. Recurrent miscarriage (RM) refers to the occurrence of three or more times abortions with the same partner. It is generally believed that environmental pollution associated with economic development may cause infertility and RM. When xenobiotics from the environment enter the body, they must be cleared from the body by various metabolic enzymes in the body. The absence or variation of these enzymes may be the genetic basis of RM caused by environmental pollution. The variation of metabolic detoxification enzyme can directly affect the removal of harmful substances from internal and external sources. Therefore, the determination of metabolic enzyme activity may become an important factor in the diagnosis of RM etiology and seeking methods to improve the detoxification ability has a great significance for the treatment of RM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eggo RPL, Bender Atik R, Christiansen OB, Elson J, Kolte AM, Lewis S, Middeldorp S, Nelen W, Peramo B, Quenby S, Vermeulen N, Goddijn M. ESHRE guideline: recurrent pregnancy loss. Hum Reprod Open. 2018;2018(2):4. https://doi.org/10.1093/hropen/hoy004.

    Article  Google Scholar 

  2. Rai R, Regan L. Recurrent miscarriage. Lancet. 2006;368(9535):601–11. https://doi.org/10.1016/s0140-6736(06)69204-0.

    Article  PubMed  Google Scholar 

  3. Giudice LC. Environmental toxicants: hidden players on the reproductive stage. Fertil Steril. 2016;106(4):791–4. https://doi.org/10.1016/j.fertnstert.2016.08.019.

    Article  CAS  PubMed  Google Scholar 

  4. Sahoo T, Dzidic N, Strecker MN, Commander S, Travis MK, Doherty C, Tyson RW, Mendoza AE, Stephenson M, Dise CA, Benito CW, Ziadie MS, Hovanes K. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges. Genet Med. 2017;19(1):83–9. https://doi.org/10.1038/gim.2016.69.

    Article  CAS  PubMed  Google Scholar 

  5. Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33(4):579–87. https://doi.org/10.1093/humrep/dey021.

    Article  CAS  PubMed  Google Scholar 

  6. Shahine L, Lathi R. Recurrent pregnancy loss: evaluation and treatment. Obstet Gynecol Clin N Am. 2015;42(1):117–34. https://doi.org/10.1016/j.ogc.2014.10.002.

    Article  Google Scholar 

  7. Li J, Li X, Zhang S, Snyder M. Gene-environment interaction in the era of precision medicine. Cell. 2019;177(1):38–44. https://doi.org/10.1016/j.cell.2019.03.004.

    Article  CAS  PubMed  Google Scholar 

  8. Egerup P, Kolte AM, Larsen EC, Krog M, Nielsen HS, Christiansen OB. Recurrent pregnancy loss: what is the impact of consecutive versus non-consecutive losses? Hum Reprod. 2016;31(11):2428–34. https://doi.org/10.1093/humrep/dew169.

    Article  CAS  PubMed  Google Scholar 

  9. Silva TL, Carneiro PLS, Ambrosini DP, Lôbo RB, Filho RM, Malhado CHM. Genotype-environment interaction in the genetic variability analysis of reproductive traits in Nellore cattle. Livest Sci. 2019;230:103825. https://doi.org/10.1016/j.livsci.2019.103825.

    Article  Google Scholar 

  10. Toth B, Jeschke U, Rogenhofer N, Scholz C, Würfel W, Thaler CJ, Makrigiannakis A. Recurrent miscarriage: current concepts in diagnosis and treatment. J Reprod Immunol. 2010;85(1):25–32. https://doi.org/10.1016/j.jri.2009.12.006.

    Article  CAS  PubMed  Google Scholar 

  11. Major J, Jakab MG, Tompa A. The frequency of induced premature centromere division in human populations occupationally exposed to genotoxic chemicals. Mutat Res. 1999;445(2):241–9. https://doi.org/10.1016/s1383-5718(99)00129-1.

    Article  CAS  PubMed  Google Scholar 

  12. Economopoulos KP, Sergentanis TN. GSTM1, GSTT1, GSTP1, GSTA1 and colorectal cancer risk: a comprehensive meta-analysis. Eur J Cancer. 2010;46(9):1617–31. https://doi.org/10.1016/j.ejca.2010.02.009.

    Article  CAS  PubMed  Google Scholar 

  13. Nonaka T, Takakuwa K, Tanaka K. Analysis of the polymorphisms of genes coding biotransformation enzymes in recurrent miscarriage in the Japanese population. J Obstet Gynaecol Res. 2011;37(10):1352–8. https://doi.org/10.1111/j.1447-0756.2011.01529.x.

    Article  PubMed  Google Scholar 

  14. Polimanti R, Piacentini S, Lazzarin N, Vaquero E, Re MA, Manfellotto D, Fuciarelli M. Glutathione S-transferase genes and the risk of recurrent miscarriage in Italian women. Fertil Steril. 2012;98(2):396–400. https://doi.org/10.1016/j.fertnstert.2012.05.003.

    Article  CAS  PubMed  Google Scholar 

  15. Zusterzeel PL, Nelen WL, Roelofs HM, Peters WH, Blom HJ, Steegers EA. Polymorphisms in biotransformation enzymes and the risk for recurrent early pregnancy loss. Mol Hum Reprod. 2000;6(5):474–8. https://doi.org/10.1093/molehr/6.5.474.

    Article  CAS  PubMed  Google Scholar 

  16. Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-glycosyltransferase (UGT) superfamily: new members, new functions, and novel paradigms. Physiol Rev. 2019;99(2):1153–222. https://doi.org/10.1152/physrev.00058.2017.

    Article  CAS  PubMed  Google Scholar 

  17. Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Bélanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JR, Ritter JK, Schachter H, Tephly TR, Tipton KF, Nebert DW. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics. 1997;7(4):255–69. https://doi.org/10.1097/00008571-199708000-00001.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Hou J, Feng F, Li D, Jiang Q, Li X, Zhao Q, Li BA. Genetic polymorphisms in human UDP-glucuronosyltransferases 1A7 and the risk of gastrointestinal carcinomas: a systematic review and network meta-analysis. Oncotarget. 2017;8(39):66371–81. https://doi.org/10.18632/oncotarget.18675.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Petrenaite V, Öhman I, Ekström L, Sæbye D, Hansen TF, Tomson T, Sabers A. UGT polymorphisms and lamotrigine clearance during pregnancy. Epilepsy Res. 2018;140:199–208. https://doi.org/10.1016/j.eplepsyres.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  20. Reisinger TL, Newman M, Loring DW, Pennell PB, Meador KJ. Antiepileptic drug clearance and seizure frequency during pregnancy in women with epilepsy. Epilepsy Behav. 2013;29(1):13–8. https://doi.org/10.1016/j.yebeh.2013.06.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li SN, Cao YF, Sun XY, Yang K, Liang YJ, Gao SS, Fu ZW, Liu YZ, Yang K, Fang ZZ. Hydroxy metabolites of polychlorinated biphenyls (OH-PCBs) exhibit inhibitory effects on UDP-glucuronosyltransferases (UGTs). Chemosphere. 2018;212:513–22. https://doi.org/10.1016/j.chemosphere.2018.08.040.

    Article  CAS  PubMed  Google Scholar 

  22. Wang F, Wang S, Yang K, Liu YZ, Yang K, Chen Y, Fang ZZ. Inhibition of UDP-glucuronosyltransferases (UGTs) by bromophenols (BPs). Chemosphere. 2020;238:124645. https://doi.org/10.1016/j.chemosphere.2019.124645.

    Article  CAS  PubMed  Google Scholar 

  23. Kapitulnik J. Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol Pharmacol. 2004;66(4):773–9. https://doi.org/10.1124/mol.104.002832.

    Article  CAS  PubMed  Google Scholar 

  24. Servedio V, d’Apolito M, Maiorano N, Minuti B, Torricelli F, Ronchi F, Zancan L, Perrotta S, Vajro P, Boschetto L, Iolascon A. Spectrum of UGT1A1 mutations in Crigler-Najjar (CN) syndrome patients: identification of twelve novel alleles and genotype-phenotype correlation. Hum Mutat. 2005;25(3):325. https://doi.org/10.1002/humu.9322.

    Article  PubMed  Google Scholar 

  25. Itäaho K, Mackenzie PI, Ikushiro S, Miners JO, Finel M. The configuration of the 17-hydroxy group variably influences the glucuronidation of beta-estradiol and epiestradiol by human UDP-glucuronosyltransferases. Drug Metab Dispos. 2008;36(11):2307–15. https://doi.org/10.1124/dmd.108.022731.

    Article  CAS  PubMed  Google Scholar 

  26. Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacog J. 2003;3(3):136–58. https://doi.org/10.1038/sj.tpj.6500171.

    Article  CAS  Google Scholar 

  27. Mackenzie PI, Miners JO, McKinnon RA. Polymorphisms in UDP glucuronosyltransferase genes: functional consequences and clinical relevance. Clin Chem Lab Med. 2000;38(9):889–92. https://doi.org/10.1515/cclm.2000.129.

    Article  CAS  PubMed  Google Scholar 

  28. Nagar S, Remmel RP. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene. 2006;25(11):1659–72. https://doi.org/10.1038/sj.onc.1209375.

    Article  CAS  PubMed  Google Scholar 

  29. Ménard V, Eap O, Harvey M, Guillemette C, Lévesque E. Copy-number variations (CNVs) of the human sex steroid metabolizing genes UGT2B17 and UGT2B28 and their associations with a UGT2B15 functional polymorphism. Hum Mutat. 2009;30(9):1310–9. https://doi.org/10.1002/humu.21054.

    Article  CAS  PubMed  Google Scholar 

  30. Lewis BC, Mackenzie PI, Elliot DJ, Burchell B, Bhasker CR, Miners JO. Amino terminal domains of human UDP-glucuronosyltransferases (UGT) 2B7 and 2B15 associated with substrate selectivity and autoactivation. Biochem Pharmacol. 2007;73(9):1463–73. https://doi.org/10.1016/j.bcp.2006.12.021.

    Article  CAS  PubMed  Google Scholar 

  31. Stringer F, Scott G, Valbuena M, Kinley J, Nishihara M, Urquhart R. The effect of genetic polymorphisms in UGT2B15 on the pharmacokinetic profile of sipoglitazar, a novel anti-diabetic agent. Eur J Clin Pharmacol. 2013;69(3):423–30. https://doi.org/10.1007/s00228-012-1382-7.

    Article  CAS  PubMed  Google Scholar 

  32. Hanioka N, Naito T, Narimatsu S. Human UDP-glucuronosyltransferase isoforms involved in bisphenol A glucuronidation. Chemosphere. 2008;74(1):33–6. https://doi.org/10.1016/j.chemosphere.2008.09.053.

    Article  CAS  PubMed  Google Scholar 

  33. Hunt PA, Lawson C, Gieske M, Murdoch B, Smith H, Marre A, Hassold T, VandeVoort CA. Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc Natl Acad Sci U S A. 2012;109(43):17525–30. https://doi.org/10.1073/pnas.1207854109.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kong D, Xing L, Liu R, Jiang J, Wang W, Shang L, Wei X, Hao W. Individual and combined developmental toxicity assessment of bisphenol A and genistein using the embryonic stem cell test in vitro. Food Chem Toxicol. 2013;60:497–505. https://doi.org/10.1016/j.fct.2013.08.006.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang HM, Fang ZZ, Cao YF, Hu CM, Sun XY, Hong M, Yang L, Ge GB, Liu Y, Zhang YY, Dong Q, Liu RJ. New insights for the risk of bisphenol A: inhibition of UDP-glucuronosyltransferases (UGTs). Chemosphere. 2013;93(6):1189–93. https://doi.org/10.1016/j.chemosphere.2013.06.070.

    Article  CAS  PubMed  Google Scholar 

  36. Nishikawa M, Iwano H, Yanagisawa R, Koike N, Inoue H, Yokota H. Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ Health Perspect. 2010;118(9):1196–203. https://doi.org/10.1289/ehp.0901575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tampal N, Lehmler HJ, Espandiari P, Malmberg T, Robertson LW. Glucuronidation of hydroxylated polychlorinated biphenyls (PCBs). Chem Res Toxicol. 2002;15(10):1259–66. https://doi.org/10.1021/tx0200212.

    Article  CAS  PubMed  Google Scholar 

  38. Wang D. The uridine diphosphate glucuronosyltransferases: quantitative structure-activity relationships for hydroxyl polychlorinated biphenyl substrates. Arch Toxicol. 2005;79(10):554–60. https://doi.org/10.1007/s00204-005-0671-7.

    Article  CAS  PubMed  Google Scholar 

  39. Net S, Delmont A, Sempéré R, Paluselli A, Ouddane B. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): a review. Sci Total Environ. 2015;515:162–80. https://doi.org/10.1016/j.scitotenv.2015.02.013.

    Article  CAS  PubMed  Google Scholar 

  40. Harris S, Wegner S, Hong SW, Faustman EM. Phthalate metabolism and kinetics in an in vitro model of testis development. Toxicol In Vitro. 2016;32:123–31. https://doi.org/10.1016/j.tiv.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  41. Ito R, Seshimo F, Miura N, Kawaguchi M, Saito K, Nakazawa H. Effect of sterilization process on the formation of mono(2-ethylhexyl)phthalate from di(2-ethylhexyl)phthalate. J Pharm Biomed Anal. 2006;41(2):455–60. https://doi.org/10.1016/j.jpba.2005.12.021.

    Article  CAS  PubMed  Google Scholar 

  42. Huang PC, Kuo PL, Guo YL, Liao PC, Lee CC. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Hum Reprod. 2007;22(10):2715–22. https://doi.org/10.1093/humrep/dem205.

    Article  CAS  PubMed  Google Scholar 

  43. Lovekamp TN, Davis BJ. Mono-(2-ethylhexyl) phthalate suppresses aromatase transcript levels and estradiol production in cultured rat granulosa cells. Toxicol Appl Pharmacol. 2001;172(3):217–24. https://doi.org/10.1006/taap.2001.9156.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng B, Hu G, Yu J, Liu Z. Crigler-Najjar syndrome type II in a Chinese boy resulting from three mutations in the bilirubin uridine 5′-diphosphate-glucuronosyltransferase (UGT1A1) gene and a family genetic analysis. BMC Pediatr. 2014;14:267. https://doi.org/10.1186/1471-2431-14-267.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Du Z, Cao YF, Li SN, Hu CM, Fu ZW, Huang CT, Sun XY, Liu YZ, Yang K, Fang ZZ. Inhibition of UDP-glucuronosyltransferases (UGTs) by phthalate monoesters. Chemosphere. 2018;197:7–13. https://doi.org/10.1016/j.chemosphere.2018.01.010.

    Article  CAS  PubMed  Google Scholar 

  46. ACOG Practice Bulletin No.142. Cerclage for the management of cervical insufficiency. Obstet Gynecol. 2014;123(2 Pt 1):372–9. https://doi.org/10.1097/01.AOG.0000443276.68274.cc.

    Article  Google Scholar 

  47. Cao Y, Sun H, Zhu H, Zhu X, Tang X, Yan G, Wang J, Bai D, Wang J, Wang L, Zhou Q, Wang H, Dai C, Ding L, Xu B, Zhou Y, Hao J, Dai J, Hu Y. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial. Stem Cell Res Ther. 2018;9(1):192. https://doi.org/10.1186/s13287-018-0904-3.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Glueck CJ, Smith D, Gandhi N, Hemachandra K, Shah P, Wang P. Treatable high homocysteine alone or in concert with five other thrombophilias in 1014 patients with thrombotic events. Blood Coagul Fibrinolysis. 2015;26(7):736–42. https://doi.org/10.1097/mbc.0000000000000276.

    Article  CAS  PubMed  Google Scholar 

  49. De Krom G, Arens YH, Coonen E, Van Ravenswaaij-Arts CM, Meijer-Hoogeveen M, Evers JL, Van Golde RJ, De Die-Smulders CE. Recurrent miscarriage in translocation carriers: no differences in clinical characteristics between couples who accept and couples who decline PGD. Hum Reprod. 2015;30(2):484–9. https://doi.org/10.1093/humrep/deu314.

    Article  CAS  PubMed  Google Scholar 

  50. Andrade C. Major malformation risk, pregnancy outcomes, and neurodevelopmental outcomes associated with metformin use during pregnancy. J Clin Psychiatry. 2016;77(4):e411–4. https://doi.org/10.4088/JCP.16f10789.

    Article  PubMed  Google Scholar 

  51. Empson M, Lassere M, Craig J, Scott J. Prevention of recurrent miscarriage for women with antiphospholipid antibody or lupus anticoagulant. Cochrane Database Syst Rev. 2005;2:Cd002859. https://doi.org/10.1002/14651858.CD002859.pub2.

    Article  Google Scholar 

  52. Alijotas-Reig J, Ferrer-Oliveras R. The European registry on obstetric antiphospholipid syndrome (EUROAPS): a preliminary first year report. Lupus. 2012;21(7):766–8. https://doi.org/10.1177/0961203312440058.

    Article  CAS  PubMed  Google Scholar 

  53. Chouinard S, Yueh MF, Tukey RH, Giton F, Fiet J, Pelletier G, Barbier O, Bélanger A. Inactivation by UDP-glucuronosyltransferase enzymes: the end of androgen signaling. J Steroid Biochem Mol Biol. 2008;109(3-5):247–53. https://doi.org/10.1016/j.jsbmb.2008.03.016.

    Article  CAS  PubMed  Google Scholar 

  54. Bock KW. From differential induction of UDP-glucuronosyltransferases in rat liver to characterization of responsible ligand-activated transcription factors, and their multilevel crosstalk in humans. Biochem Pharmacol. 2011;82(1):9–16. https://doi.org/10.1016/j.bcp.2011.03.011.

    Article  CAS  PubMed  Google Scholar 

  55. Michels AJ, Hagen TM, Frei B. Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function. Annu Rev Nutr. 2013;33:45–70. https://doi.org/10.1146/annurev-nutr-071812-161246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ikeda S, Abe C, Uchida T, Ichikawa T, Horio F, Yamashita K. Dietary sesame seed and its lignan increase both ascorbic acid concentration in some tissues and urinary excretion by stimulating biosynthesis in rats. J Nutr Sci Vitaminol. 2007;53(5):383–92. https://doi.org/10.3177/jnsv.53.383.

    Article  CAS  PubMed  Google Scholar 

  57. Berger ND, Stanley FKT, Moore S, Goodarzi AA. ATM-dependent pathways of chromatin remodelling and oxidative DNA damage responses. Philos Trans R Soc Lond Ser B Biol Sci. 2017;372:1731. https://doi.org/10.1098/rstb.2016.0283.

    Article  CAS  Google Scholar 

  58. Tanaka T, Kobori Y, Terai K, Inoue Y, Osaka A, Yoshikawa N, Shimomura Y, Suzuki K, Minami T, Iwahata T, Onota S, Yamamoto A, Sugimoto K, Okada H. Seminal oxidation-reduction potential and sperm DNA fragmentation index increase among infertile men with varicocele. Hum Fertil. 2020;2020:1–5. https://doi.org/10.1080/14647273.2020.1712747.

    Article  CAS  Google Scholar 

  59. Neusser M, Rogenhofer N, Dürl S, Ochsenkühn R, Trottmann M, Jurinovic V, Steinlein O, von Schönfeldt V, Müller S, Thaler CJ. Increased chromosome 16 disomy rates in human spermatozoa and recurrent spontaneous abortions. Fertil Steril. 2015;104(5):1130–7. https://doi.org/10.1016/j.fertnstert.2015.07.1160.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, C., Shang, W. (2021). The Variations of Metabolic Detoxification Enzymes Lead to Recurrent Miscarriage and Their Diagnosis Strategy. In: Zhang, H., Yan, J. (eds) Environment and Female Reproductive Health. Advances in Experimental Medicine and Biology, vol 1300. Springer, Singapore. https://doi.org/10.1007/978-981-33-4187-6_12

Download citation

Publish with us

Policies and ethics