Skip to main content

Electro-Mechanical Response of a Cracked Piezoelectric Cantilever Beam

  • Conference paper
  • First Online:
Advances in Mechanical Design (ICMD 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 77))

Included in the following conference series:

Abstract

Piezoelectric ceramics are of importance to the field of aerospace, electric and electronic. However, crack often happens on the surface of piezoelectric ceramics due to harsh working environment. The purpose of this article is to study the impacts of crack on the electro-mechanical response of a piezoelectric beam. Firstly, a finite element model of the piezoelectric cantilever beam was set up by using the software of ABAQUS. And subsequently, the mechanic and electric induced response of the cantilever beam was discussed. Thereafter, a cracked piezoelectric cantilever beam was developed. The effects of crack on the electro-mechanical response of a cantilever beam were studied. Results indicate that the electro-mechanical response is proportional to the input force and the input voltage. As crack propagates, the variation rule of the electro-mechanical response depends on the crack size. This conclusion is helpful to the prediction of crack size, and to provide a new idea for the prediction of the piezoelectrical structure life.

This project is supported by National Natural Science Foundation of China (Grant No. 51565039), the Jiangxi Provincial Nautral Science Foundation (Grant No. 20181BAB206023).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao, C.S.: Ultrasonic Motors Technologies and Applications, pp. 128–129. Science Press, Beijing (2007). (in Chinese)

    Google Scholar 

  2. Fan, K.Q., Chao, F.B., Zhang, J.G., et al.: Design and experimental verification of a bi-directional nonlinear piezoelectric energy harvester. Energy Convers. Manag. 86(10), 561–567 (2014)

    Article  Google Scholar 

  3. Fan, K.Q., Chang, J.W., Pedrycz, W., et al.: A nonlinear piezoelectric energy harvest for various mechanical motions. Appl. Phys. Lett. 106(22), 223902 (2015)

    Article  Google Scholar 

  4. Chen, R.W., Ren, L., Xia, H.K., et al.: Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvest. Sens. Actuators: Phys. 230, 1–8 (2015)

    Article  Google Scholar 

  5. Su, W.J., Zu, J.: An innovative tri-directional broadband piezoelectric energy harvester. Appl. Phys. Lett. 103(20), 203901–203901-4 (2013)

    Article  Google Scholar 

  6. Su, W.J., Zu, J.W.: Design and development of a novel bi-directional piezoelectric energy harvester. Smart Mater. Struct. 23(9), 095012 (2014)

    Article  Google Scholar 

  7. Kurosawa, M., Kodaira, O., Tsuchitoi, Y., et al.: Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1188–1195 (1998)

    Article  Google Scholar 

  8. Tan, K., Liang, W.Y., Huang, S.N., et al.: Precision control of piezoelectric ultrasonic motor for myringotomy with tube insertion. J. Dyn. Syst. Meas. Control 137(6), 064504-2–064504-4 (2015)

    Google Scholar 

  9. Ghenna, S., Amberg, M., Giraud-Audine, C., et al.: Modelling and control of a travelling wave in a finite beam, using multi-modal approach and vector control method. In: Joint Conference of the IEEE International Frequency Control Symposium and the European Frequency and Time Forum, villeneuve-d’ascq, franch (2015)

    Google Scholar 

  10. Tavallaei, M., Atashzar, S., Drangova, M.: Robust motion control of ultrasonic motors under temperature disturbance. IEEE Trans. Ind. Electron. 63(4), 2360–2368 (2016)

    Article  Google Scholar 

  11. Kuhne, M., Rochin, R., Santiesteban, R., et al.: Modeling and two-input sliding mode control of rotary traveling wave ultrasonic motors. IEEE Trans. Ind. Electron. 65(9), 7149–7159 (2018)

    Article  Google Scholar 

  12. Jamia, N., El-Borgi, S., Rekik, M., et al.: Investigation of the behavior of a mixed-mode crack in a functionally graded magneto-electro-elastic material by use of the non-local theory. Theor. Appl. Fract. Mech. 74, 126–142 (2014)

    Article  Google Scholar 

  13. Herrmann, K., Loboda, V., Khodanen, T.: An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial. Arch. Appl. Mech. 80(6), 651–670 (2010)

    Article  Google Scholar 

  14. Li, Y.D., Xiong, T., Cai, Q.G.: Coupled interfacial imperfections and their effects on the fracture behavior of a layered multiferroic cylinder. Acta Mech. 226(4), 1183–1199 (2015)

    Article  MathSciNet  Google Scholar 

  15. Kida, K., Saito, M., Kitamura, K.: Flaking failure originating from a single surface crack in silicon nitride under rolling contact fatigue. Fatigue Fract. Eng. Mater. Struct. 28(12), 1087–1097 (2005)

    Article  Google Scholar 

  16. Ueda, S., Hatano, H.: T-shaped crack in a piezoelectric material thermo-electro-mechanical loadings. J. Therm. Stress. 35(1–3), 12–29 (2012)

    Article  Google Scholar 

  17. Kwon, J., Lee, K., Kwon, S.: Moving crack in a piezoelectric ceramic strip under anti-plane shear loading. Mech. Res. Commun. 27(3), 327–332 (2000)

    Article  Google Scholar 

  18. Hou, M.S., Qian, X.Q., Bian, W.F.: Energy release rate and bifurcation angers of piezoelectric materials with antiplane moving crack. Int. J. Fract. 107(14), 297–306 (2001)

    Article  Google Scholar 

  19. Jangid, K., Bhargava, R.: Complex variable-based analysis for two semi-permeable collinear cracks in a piezoelectro-magnetic media. Mech. Adv. Mater. Struct. 24(12), 1007–1016 (2017)

    Article  Google Scholar 

  20. Wan, Y.P., Yue, Y.P., Zhong, Z.: A mode III crack crossing the magnetoelectroelastic bimaterial interface under concentrated magnetoelectromechanical loads. Int. J. Solids Struct. 49(21), 3008–3021 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C., Liu, W., Wang, Y. (2020). Electro-Mechanical Response of a Cracked Piezoelectric Cantilever Beam. In: Tan, J. (eds) Advances in Mechanical Design. ICMD 2019. Mechanisms and Machine Science, vol 77. Springer, Singapore. https://doi.org/10.1007/978-981-32-9941-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9941-2_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9940-5

  • Online ISBN: 978-981-32-9941-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics