Skip to main content

Proteins and Amino Acids from Thermophilic Microorganisms: Current Research Trends and Applications

  • Chapter
  • First Online:
Thermophiles for Biotech Industry

Abstract

Thermophilic microorganisms synthesize macromolecules with intrinsic thermostability, which does not depend upon any stabilizing factors. Thermophilic organisms survive as a result of the interaction of many mechanisms, namely, rapid growth toward stabilization, more stable membrane, etc. The chief stabilizing factor for survival of thermophile is the heat stability of cellular proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold FH, Wintrode PL, Miyazaki K, Gershenson A (2001) How enzymes adapt: lessons from directed evolution. Trends Biochem Sci 26(2):100–106

    Article  CAS  PubMed  Google Scholar 

  • Boutz DR, Cascio D, Whitelegge J, Perry LJ, Yeates TO (2007) Discovery of a thermophilic protein complex stabilized by topologically interlinked chains. J Mol Biol 368(5):1332–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bräsen C, Urbanke C, Schönheit P (2005) A novel octameric AMP-forming acetyl-CoA synthetase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. FEBS Lett 579(2):477–482

    Article  CAS  PubMed  Google Scholar 

  • Cacciapuoti G, Porcelli M, Bertoldo C, De Rosa M, Zappia V (1994) Purification and characterization of extremely thermophilic and thermostable 5′-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and evidence for intersubunit disulfide bonds. J Biol Chem 269(40):24762–24769

    CAS  PubMed  Google Scholar 

  • Cacciapuoti G, Fuccio F, Petraccone L, Del Vecchio P, Porcelli M (2012) Role of disulfide bonds in conformational stability and folding of 5′-deoxy-5′-methylthioadenosine phosphorylase II from the hyperthermophilic archaeon Sulfolobus solfataricus. Biochim Biophys Acta Proteins Proteomics 1824(10):1136–1143

    Article  CAS  Google Scholar 

  • Cambillau C, Claverie J-M (2000) Structural and genomic correlates of hyperthermostability. J Biol Chem 275(42):32383–32386

    Article  CAS  PubMed  Google Scholar 

  • Chan C-H, Yu T-H, Wong K-B (2011) Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS One 6(6):e21624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahiyat BI, Sarisky CA, Mayo SL (1997) De novo protein design: towards fully automated sequence selection. J Mol Biol 273(4):789–796

    Google Scholar 

  • de Champdoré M, Staiano M, Rossi M, D’Auria S (2007) Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J R Soc Interface 4(13):183–191

    Article  CAS  PubMed  Google Scholar 

  • Del Vecchio P, Elias M, Merone L et al (2009) Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 13(3):461–470

    Article  CAS  PubMed  Google Scholar 

  • Eijsink VG, Gåseidnes S, Borchert TV, van den Burg B (2005) Directed evolution of enzyme stability. Biomol Eng 22(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Farias ST, Bonato M (2003) Preferred amino acids and thermostability. Genet Mol Res 2(4):383–393

    CAS  PubMed  Google Scholar 

  • Fukuchi S, Nishikawa K (2001) Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J Mol Biol 309(4):835–843

    Article  CAS  PubMed  Google Scholar 

  • Garg M (n.d.) Glutamic acid: history, production and uses (with diagram). Retrieved August 27, 2018, from http://www.biologydiscussion.com/industrial-microbiology-2/glutamic-acid-history-production-and-uses-with-diagram/55763

  • GE Reports (2015) Recomb production. Retrieved August 31, 2018, from https://www.ge.com/reports/19-technology-breakthroughs-in-2015-that-you-should-know-about/recomb-productiont/

  • Haney PJ, Badger JH, Buldak GL et al (1999) Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci USA 96(7):3578–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendsch ZS, Tidor B (1994) Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci 3(2):211–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herigemblong (2018) Fermentation process flow chart awesome industrial production of L lysine by fermentation. Retrieved August 27, 218, from http://dailyrevshare.com/fermentation-process-flow-chart/fermentation-process-flow-chart-awesome-industrial-production-of-l-lysine-by-fermentation/

  • Ingram-Smith C, Smith KS (2006) AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization. Archaea 2(2):95–107

    Article  PubMed Central  Google Scholar 

  • Karshikoff A, Ladenstein R (2001) Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends Biochem Sci 26(9):550–557

    Article  CAS  PubMed  Google Scholar 

  • Korkegian A, Black ME, Baker D, Stoddard BL (2005) Computational thermostabilization of an enzyme. Science 308(5723):857–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Tsai C-J, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13(3):179–191

    Article  CAS  PubMed  Google Scholar 

  • Laksanalamai P, Maeder DL, Robb FT (2001) Regulation and mechanism of action of the small heat shock protein from the hyperthermophilic Archaeon Pyrococcus furiosus. J Bacteriol 183(17):5198–5202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C-F, Makhatadze GI, Wong K-B (2005) Effects of charge-to-alanine substitutions on the stability of ribosomal protein L30e from Thermococcus celer. Biochemistry 44(51):16817–16825

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Robb FT (2011) Thermophilic protein folding systems. In: Extremophiles handbook, Springer, Tokyo/Berlin, p 583–599

    Google Scholar 

  • Malakauskas SM, Mayo SL (1998) Design, structure and stability of a hyperthermophilic protein variant. Nat Struct Mol Biol 5(6):470–475

    Article  CAS  Google Scholar 

  • Mamat B, Roth A, Grimm C et al (2002) Crystal structures and enzymatic properties of three formyltransferases from archaea: environmental adaptation and evolutionary relationship. Protein Sci 11(9):2168–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews BW (1993) Structural and genetic analysis of protein stability. Annu Rev Biochem 62(1):139–160

    Article  CAS  PubMed  Google Scholar 

  • Mayer F, Küper U, Meyer C et al (2012) AMP-forming acetyl coenzyme A synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. J Bacteriol 194(6):1572–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melchionna S, Sinibaldi R, Briganti G (2006) Explanation of the stability of thermophilic proteins based on unique micromorphology. Biophys J 90(11):4204–4212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park K-H, Kim T-J, Cheong T-K et al (2000) Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochimt Biophys Acta Protein Struct Mol Enzymol 1478(2):165–185

    Article  CAS  Google Scholar 

  • Park J-T, Song H-N, Jung T-Y et al (2013) A novel domain arrangement in a monomeric cyclodextrin-hydrolyzing enzyme from the hyperthermophile Pyrococcus furiosus. Biochim Biophys Acta Proteins Proteomics 1834(1):380–386

    Article  CAS  Google Scholar 

  • Petsko GA (2001) [34] Structural basis of thermostability in hyperthermophilic proteins, or “There’s more than one way to skin a cat”. Methods Enzymol 334:469–478

    Article  CAS  PubMed  Google Scholar 

  • Pühler G, Weinkauf S, Bachmann L et al (1992) Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma acidophilum. EMBO J 11(4):1607

    Article  PubMed  PubMed Central  Google Scholar 

  • Razvi A, Scholtz JM (2006) Lessons in stability from thermophilic proteins. Protein Sci 15(7):1569–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rechsteiner M, Hoffman L, Dubiel W (1993) The multicatalytic and 26 S proteases. J Biol Chem 268:6065–6065

    CAS  PubMed  Google Scholar 

  • Reed CJ, Lewis H, Trejo E, Winston V Evilia C (2013) Protein adaptations in archaeal extremophiles. Archaea

    Google Scholar 

  • Ruepp A, Rockel B, Gutsche I, Baumeister W, Lupas AN (2001) The chaperones of the archaeon Thermoplasma acidophilum. J Struct Biol 135(2):126–138

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi M, Naderi-Manesh H, Zarrabi M, Ranjbar B (2006) Effective factors in thermostability of thermophilic proteins. Biophys Chem 119(3):256–270

    Article  CAS  PubMed  Google Scholar 

  • Sawle L, Ghosh K (2011) How do thermophilic proteins and proteomes withstand high temperature? Biophys J 101(1):217–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall, Upper Saddle

    Google Scholar 

  • Sieber V, Plückthun A, Schmid FX (1998) Selecting proteins with improved stability by a phage-based method. Nat Biotechnol 16(10):955–960

    Article  CAS  PubMed  Google Scholar 

  • Szilágyi A, Závodszky P (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8(5):493–504

    Article  PubMed  Google Scholar 

  • Taylor TJ, Vaisman II (2010) Discrimination of thermophilic and mesophilic proteins. BMC Struct Biol 10(1):S5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomazic SJ, Klibanov AM (1988) Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J Biol Chem 263(7):3086–3091

    CAS  PubMed  Google Scholar 

  • Unsworth LD, van der Oost J, Koutsopoulos S (2007) Hyperthermophilic enzymes− stability, activity and implementation strategies for high temperature applications. FEBS J 274(16):4044–4056

    Article  CAS  PubMed  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vihinen M (1987) Relationship of protein flexibility to thermostability. Protein Eng Des Sel 1(6):477–480

    Article  CAS  Google Scholar 

  • Vogt G, Argos P (1997) Protein thermal stability: hydrogen bonds or internal packing? Fold Des 2:S40–S46

    Article  CAS  PubMed  Google Scholar 

  • Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269(4):631–643

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta Proteins Proteomics 1699(1):35–44

    Article  CAS  Google Scholar 

  • Wintrode PL, Arnold FH (2001) Temperature adaptation of enzymes: lessons from laboratory evolution. Adv Protein Chem 55:161–225

    Article  Google Scholar 

  • Woycechowsky KJ, Raines RT (2003) The CXC motif: a functional mimic of protein disulfide isomerase. Biochemistry 42(18):5387–5394

    Article  CAS  PubMed  Google Scholar 

  • Zwickl P, Grziwa A, Puehler G et al (1992) Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31(4):964–972

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eswari, J.S., Dhagat, S., Sen, R. (2019). Proteins and Amino Acids from Thermophilic Microorganisms: Current Research Trends and Applications. In: Thermophiles for Biotech Industry. Springer, Singapore. https://doi.org/10.1007/978-981-32-9919-1_3

Download citation

Publish with us

Policies and ethics