Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 261 Accesses

Abstract

This chapter is an introduction, which elaborates the significance and background study of the tropical Pacific SST warming pattern. Specifically, three aspects are systematically reviewed: (1) the common climatological biases in model simulations, including the tropical-mean SST bias, the double intertropical convergence zone bias, and the excessive cold tongue bias; (2) the tropical Pacific SST warming trend in the past century based on multiple observational datasets; (3) the formation mechanisms of the tropical Pacific SST warming pattern, including the zonal warming pattern, the meridional equatorial peak warming pattern and the hemispheric asymmetric warming pattern. In addition, the models and related variables used in this monograph are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An S-I, Im S-H (2014) Blunt ocean dynamical thermostat in response of tropical eastern Pacific SST to global warming. Theoret Appl Climatol 118:173–183. https://doi.org/10.1007/s00704-013-1048-0

    Article  Google Scholar 

  2. Bellucci A, Gualdi S, Navarra A (2010) The double-ITCZ syndrome in coupled general circulation models: the role of large-scale vertical circulation regimes. J Clim 23:1127–1145. https://doi.org/10.1175/2009jcli3002.1

    Article  Google Scholar 

  3. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172. http://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2

    Article  Google Scholar 

  4. Cane MA et al (1997) Twentieth-century sea surface temperature trends. Science 275:957–960. http://doi.org/10.1126/science.275.5302.957

    Article  CAS  Google Scholar 

  5. Capotondi A, Alexander MA, Bond NA, Curchitser EN, Scott JD (2012) Enhanced upper ocean stratification with climate change in the CMIP3 models. J Geophys Res Oceans 117:C04031. https://doi.org/10.1029/2011JC007409

    Article  Google Scholar 

  6. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196

    Article  Google Scholar 

  7. Collins M (2005) El Niño- or La Niña-like climate change? Clim Dyn 24:89–104. https://doi.org/10.1007/s00382-004-0478-x

    Article  Google Scholar 

  8. Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397. http://doi.org/10.1038/ngeo868

    Article  CAS  Google Scholar 

  9. Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37. http://doi.org/10.1029/2010gl043321

    Article  Google Scholar 

  10. DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee S-K (2009) Climate response of the equatorial Pacific to global warming. J Clim 22:4873–4892. https://doi.org/10.1175/2009jcli2982.1

    Article  Google Scholar 

  11. Friedman AR, Hwang Y-T, Chiang JCH, Frierson DMW (2013) Interhemispheric temperature asymmetry over the twentieth century and in future projections. J Clim 26:5419–5433. https://doi.org/10.1175/JCLI-D-12-00525.1

    Article  Google Scholar 

  12. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. https://doi.org/10.1175/JCLI3990.1

    Article  Google Scholar 

  13. Hirota N, Takayabu YN, Watanabe M, Kimoto M (2011) Precipitation reproducibility over tropical oceans and its relationship to the double ITCZ problem in CMIP3 and MIROC5 climate models. J Clim 24:4859–4873. https://doi.org/10.1175/2011jcli4156.1

    Article  Google Scholar 

  14. Huang P (2015) Seasonal changes in tropical SST and the surface energy budget under global warming projected by CMIP5 models. J Clim 28:6503–6515. https://doi.org/10.1175/JCLI-D-15-0055.1

    Article  Google Scholar 

  15. Huang P, Ying J (2015) A multimodel ensemble pattern regression method to correct the tropical pacific SST change patterns under global warming. J Clim 28:4706–4723. https://doi.org/10.1175/JCLI-D-14-00833.1

    Article  Google Scholar 

  16. Huang P, Xie S-P, Hu K, Huang G, Huang R (2013) Patterns of the seasonal response of tropical rainfall to global warming. Nat Geosci 6:357–361. https://doi.org/10.1038/ngeo1792

    Article  CAS  Google Scholar 

  17. Hwang Y-T, Frierson DM (2013) Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc Natl Acad Sci 110:4935–4940

    Article  CAS  Google Scholar 

  18. Jia F, Wu L (2013) A study of response of the equatorial pacific SST to doubled-CO2 forcing in the coupled CAM–1.5-layer reduced-gravity ocean model. J Phys Oceanogr 43:1288–1300. http://doi.org/10.1175/JPO-D-12-0144.1

    Article  Google Scholar 

  19. Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J Clim 8:2181–2199. http://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2

    Article  Google Scholar 

  20. Knutson TR, Sirutis JJ, Garner ST, Vecchi GA, Held IM (2008) Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat Geosci 1:359–364. https://doi.org/10.1038/ngeo202

    Article  CAS  Google Scholar 

  21. Kohyama T, Hartmann DL, Battisti DS (2017) La Niña-like mean-state response to global warming and potential oceanic roles. J Clim 30:4207–4225. https://doi.org/10.1175/jcli-d-16-0441.1

    Article  Google Scholar 

  22. Li G, Xie S-P (2012) Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys Res Lett 39:L22703. https://doi.org/10.1029/2012GL053777

    Article  Google Scholar 

  23. Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim 27:1765–1780. https://doi.org/10.1175/jcli-d-13-00337.1

    Article  Google Scholar 

  24. Li G, Du Y, Xu H, Ren B (2015) An intermodel approach to identify the source of excessive equatorial pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J Clim 28:7630–7640. https://doi.org/10.1175/JCLI-D-15-0168.1

    Article  Google Scholar 

  25. Li G, Xie S-P, Du Y, Luo Y (2016) Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: the warming pattern in CMIP5 multi-model ensemble. Clim Dyn 47:1–15. https://doi.org/10.1007/s00382-016-3043-5

    Article  Google Scholar 

  26. Lian T, Chen D, Ying J, Huang P, Tang Y (2018) Tropical Pacific trends under global warming: El Niño-like or La Niña-like? Nat Sci Rev 5:810–812. https://doi.org/10.1093/nsr/nwy134

    Article  Google Scholar 

  27. Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. J Clim 20:4497–4525. https://doi.org/10.1175/JCLI4272.1

    Article  Google Scholar 

  28. Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Clim 18:4684–4700. https://doi.org/10.1175/JCLI3579.1

    Article  Google Scholar 

  29. Lu J, Zhao B (2012) The role of oceanic feedback in the climate response to doubling CO2. J Clim 25:7544–7563. https://doi.org/10.1175/jcli-d-11-00712.1

    Article  Google Scholar 

  30. Ma J, Xie S-P (2013) Regional patterns of sea surface temperature change: a source of uncertainty in future projections of precipitation and atmospheric circulation. J Clim 26:2482–2501. https://doi.org/10.1175/jcli-d-12-00283.1

    Article  Google Scholar 

  31. Ma J, Yu J-Y (2014) Linking centennial surface warming patterns in the equatorial pacific to the relative strengths of the Walker and Hadley circulations. J Atmos Sci 71:3454–3464. https://doi.org/10.1175/JAS-D-14-0028.1

    Article  Google Scholar 

  32. Ma J, Xie S-P, Kosaka Y (2012) Mechanisms for tropical tropospheric circulation change in response to global warming. J Clim 25:2979–2994. https://doi.org/10.1175/JCLI-D-11-00048.1

    Article  Google Scholar 

  33. Manabe S, Bryan K, Spelman MJ (1990) Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide. J Phys Oceanogr 20:722–749. http://doi.org/10.1175/1520-0485(1990)020<0722:TROAGO>2.0.CO;2

    Article  Google Scholar 

  34. Mechoso CR et al (1995) The seasonal cycle over the tropical Pacific in coupled ocean—atmosphere general circulation models. Mon Weather Rev 123:2825–2838. http://doi.org/10.1175/1520-0493(1995)123<2825:tscott>2.0.co;2

    Article  Google Scholar 

  35. Meehl GA, Washington WM (1996) El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature 382:56–60. https://doi.org/10.1038/382056a0

    Article  CAS  Google Scholar 

  36. Meehl GA et al (2005) How much more global warming and sea level rise. Science 307:1769–1772

    Article  CAS  Google Scholar 

  37. Philander SGH, Gu D, Lambert G, Li T, Halpern D, Lau NC, Pacanowski RC (1996) Why the ITCZ is mostly north of the equator. J Clim 9:2958–2972. http://doi.org/10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2

    Article  Google Scholar 

  38. Pierce DW, Barnett TP, AchutaRao KM, Gleckler PJ, Gregory JM, Washington WM (2006) Anthropogenic warming of the oceans: observations and model results. J Clim 19:1873–1900. http://doi.org/10.1175/JCLI3723.1

    Article  Google Scholar 

  39. Ramanathan V, Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature 351:27–32. https://doi.org/10.1038/351027a0

    Article  Google Scholar 

  40. Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45. https://doi.org/10.1038/nature13636

    Article  CAS  Google Scholar 

  41. Seager R, Murtugudde R (1997) Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J Clim 10:521–534. http://doi.org/10.1175/1520-0442(1997)010<0521:ODTAAR>2.0.CO;2

    Article  Google Scholar 

  42. Shin S-I, Sardeshmukh PD (2011) Critical influence of the pattern of tropical ocean warming on remote climate trends. Clim Dyn 36:1577–1591

    Article  Google Scholar 

  43. Song X, Zhang GJ (2014) Role of climate feedback in El Niño-Like SST response to global warming. J Clim 27:7301–7318. https://doi.org/10.1175/jcli-d-14-00072.1

    Article  Google Scholar 

  44. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  45. Tokinaga H, Xie S-P, Timmermann A, McGregor S, Ogata T, Kubota H, Okumura YM (2012) Regional patterns of tropical Indo-Pacific climate change: evidence of the Walker circulation weakening*. J Clim 25:1689–1710. https://doi.org/10.1175/jcli-d-11-00263.1

    Article  Google Scholar 

  46. Vecchi GA, Soden BJ (2007) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1066–1070. https://doi.org/10.1038/nature06423

    Article  CAS  Google Scholar 

  47. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. https://doi.org/10.1175/jcli4258.1

    Article  Google Scholar 

  48. Vecchi GA, Clement A, Soden BJ (2008) Examining the tropical Pacific’s response to global warming. Eos, Trans Am Geophys Union 89:81–83. https://doi.org/10.1029/2008EO090002

    Article  Google Scholar 

  49. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76. https://doi.org/10.1038/nature04744

    Article  CAS  Google Scholar 

  50. Wang C, Zhang L, Lee S-K, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205. http://doi.org/10.1038/nclimate2118, http://www.nature.com/nclimate/journal/v4/n3/abs/nclimate2118.html#supplementary-information

    Article  Google Scholar 

  51. Xie S-P, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46:340–350. https://doi.org/10.1034/j.1600-0870.1994.t01-1-00001.x

    Article  Google Scholar 

  52. Xie S-P, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986. https://doi.org/10.1175/2009jcli3329.1

    Article  Google Scholar 

  53. Xie S-P et al (2015) Towards predictive understanding of regional climate change. Nat Clim Change 5:921–930. http://doi.org/10.1038/nclimate2689

    Article  Google Scholar 

  54. Zhang L, Li T (2014) A simple analytical model for understanding the formation of sea surface temperature patterns under global warming. J Clim 27:8413–8421. https://doi.org/10.1175/jcli-d-14-00346.1

    Article  Google Scholar 

  55. Zheng Y, Lin J-L, Shinoda T (2012) The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs: upper ocean heat budget and feedback analysis. J Geophys Res 117:C05024. https://doi.org/10.1029/2011jc007746

    Article  Google Scholar 

  56. Zheng Y, Shinoda T, Lin J-L, Kiladis GN (2011) Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19 IPCC AR4 coupled general circulation models. J Clim 24:4139–4164. https://doi.org/10.1175/2011jcli4172.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ying .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ying, J. (2020). Introduction. In: Sources of Uncertainty in the Tropical Pacific Warming Pattern under Global Warming Projected by Coupled Ocean-Atmosphere Models. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-32-9844-6_1

Download citation

Publish with us

Policies and ethics