Skip to main content

Advertisement

Log in

Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: the warming pattern in CMIP5 multi-model ensemble

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The excessive cold tongue error in the equatorial Pacific has persisted in several generations of climate models. Based on the historical simulations and Representative Concentration Pathway (RCP) 8.5 experiments in the Coupled Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble (MME), this study finds that models with an excessive westward extension of cold tongue and insufficient equatorial western Pacific precipitation tend to project a weaker east-minus-west gradient of sea surface temperature (SST) warming along the equatorial Pacific under increased greenhouse gas (GHG) forcing. This La Niña-like error of tropical Pacific SST warming is consistent with our understanding of negative SST-convective feedback over the western Pacific warm pool. Based on this relationship between the present simulations and future projections, the present study applies an “observational constraint” of equatorial western Pacific precipitation to calibrate the projections of tropical Pacific climate change. After the corrections, CMIP5 models robustly project an El Niño-like warming pattern, with a MME mean increase by a factor of 2.3 in east-minus-west gradient of equatorial Pacific SST warming and reduced inter-model uncertainty. Corrections in projected changes in tropical precipitation and atmospheric circulation are physically consistent. This study suggests that a realistic cold tongue simulation would lead to a more reliable tropical Pacific climate projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abe M, Shiogama H, Nozawa T, Emori S (2011) Estimation of future surface temperature changes constrained using the future-present correlated modes in inter-model variability of CMIP3 multimodel simulations. J Geophys Res 116:D18104. doi:10.1029/2010JD015111

    Article  Google Scholar 

  • AchutaRao K, Sperber KR (2006) ENSO simulation in coupled ocean–atmosphere models: Are the current models better? Clim Dyn 27:1–15

    Article  Google Scholar 

  • Adler RF et al (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Boe J, Hall A, Qu X (2009) September sea-ice cover in the Arctic ocean projected to vanish by 2100. Nat Geosci 2:341–343

    Article  Google Scholar 

  • Bony S, Lau K-M, Sud YC (1997) Sea surface temperature and large scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J Clim 10:2055–2077

    Article  Google Scholar 

  • Bracegirdle TJ, Stephenson DB (2012) Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Clim Dyn 39:2805–2821

    Article  Google Scholar 

  • Bracegirdle TJ, Stephenson DB (2013) On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming. J Clim 26:669–678

    Article  Google Scholar 

  • Brown JN, Matear R, Brown JR, Katzfey J (2015) Precipitation projections in the tropical Pacific are sensitive to different types of SST bias adjustment. Geophys Res Lett. doi:10.1002/2015GL066184

    Google Scholar 

  • Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116

    Article  Google Scholar 

  • Cai W et al (2015) ENSO and greenhouse warming. Nat Clim Change 5:849–859

    Article  Google Scholar 

  • Cane MA, Clement AC, Kaplan A, Kushnir Y, Pozdnyakov D, Seager R, Zebiak S, Murtugudde R (1997) Twentieth century sea surface temperature trends. Science 275:957–960

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of Ocean climate using simple Ocean data assimilation (SODA). Mon Weather Rev 136:2999–3017

    Article  Google Scholar 

  • Chadwick R, Boutle I, Martin G (2013) Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J Clim 26:3803–3822

    Article  Google Scholar 

  • Chou C, Neelin JD (2004) Mechanisms of global warming impacts on regional tropical precipitation. J Clim 17:2688–2701

    Article  Google Scholar 

  • Chou C, Neelin JD, Chen C-A, Tu J-Y (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • Christensen JH et al (2014) Climate phenomena and their relevance for future regional climate change. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, pp 1217–1308

    Google Scholar 

  • Chung CTY, Power SB, Arblaster JM, Rashid HA, Roff GL (2014) Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Clim Dyn 42:1837–1856

    Article  Google Scholar 

  • Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196

    Article  Google Scholar 

  • Collins M et al (2010) The impact of global warming on the tropical Pacific ocean and El Niño. Nat Geosci 3:391–397

    Article  Google Scholar 

  • Collins M, Chandler RE, Cox PM, Huthnance JM, Rougier J, Stephenson DB (2012) Quantifying future climate change. Nat Clim Change 2:403–409

    Article  Google Scholar 

  • Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494:341–344

    Article  Google Scholar 

  • Deser C, Phillips A, Alexander M (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37:L10701. doi:10.1029/2010GL043321

    Article  Google Scholar 

  • Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1093

    Article  Google Scholar 

  • Endo H, Kitoh A (2014) Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys Res Lett 41:1704–1711

    Article  Google Scholar 

  • Fang C, Wu L (2008) The role of ocean dynamics in tropical Pacific SST response to warm climate in a fully coupled GCM. Geophys Res Lett 35:L08703. doi:10.1029/2007GL033097

    Google Scholar 

  • Gordon CT, Rosati A, Gudgel R (2000) Tropical sensitivity of a coupled model to specified ISCCP low clouds. J Clim 13:2239–2260

    Article  Google Scholar 

  • Grose MR, Bhend J, Narsey S, Gupta AS, Brown JR (2014) Can we constrain CMIP5 rainfall projections in the tropical Pacific based on surface warming patterns? J Clim 27:9123–9138

    Article  Google Scholar 

  • Guilyardi E (2006) El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348

    Article  Google Scholar 

  • Ham YG, Kug JS (2012) How well do current climate models simulate two types of El Niño? Clim Dyn 39:383–398

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Huang P, Ying J (2015) A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J Clim 28:4706–4723

    Article  Google Scholar 

  • Huang P, Xie S-P, Hu K, Huang G, Huang R (2013) Patterns of the seasonal response of tropical rainfall to global warming. Nat Geosci 6:357–361

    Article  Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland expansion under climate change. Nat Clim Change. doi:10.1038/nclimate2837

    Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589

    Article  Google Scholar 

  • Kent C, Chadwick R, Rowell DP (2015) Understanding uncertainties in future projections of seasonal tropical precipitation. J Clim 28:4390–4413

    Article  Google Scholar 

  • Kim ST, Cai W, Jin F-F, Yu J-Y (2014) ENSO stability in coupled climate models and its association with mean state. Clim Dyn 42:3313–3321

    Article  Google Scholar 

  • Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific due to increased CO2 in a coupled ocean–atmosphere model. J Clim 8:2181–2199

    Article  Google Scholar 

  • Large WG, Gent PR (1999) Validation of vertical mixing in an equatorial ocean model using large eddy simulations and observations. J Phys Oceanogr 29:449–464

    Article  Google Scholar 

  • Latif M et al (2001) ENSIP: the El Niño simulation intercomparison project. Clim Dyn 18:255–276

    Article  Google Scholar 

  • Li G (2016) Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part II: the extreme El Niño frequency in CMIP5 multi-model ensemble. Clim Dyn (under review)

  • Li G, Xie S-P (2012) Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys Res Lett 39:L22703. doi:10.1029/2012GL053777

    Google Scholar 

  • Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim 27:1765–1780

    Article  Google Scholar 

  • Li G, Du Y, Xu H, Ren B (2015a) An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J Clim 28:7630–7640

    Article  Google Scholar 

  • Li G, Xie S-P, Du Y (2015b) Monsoon-induced biases of climate models over the tropical Indian Ocean. J Clim 28:3058–3072

    Article  Google Scholar 

  • Li G, Xie S-P, Du Y (2015c) Climate model errors over the south Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J Clim 28:3093–3098

    Article  Google Scholar 

  • Li G, Xie S-P, Du Y (2016) A robust but spurious pattern of climate change in model projections over the tropical Indian Ocean. J Clim (under review)

  • Liu Z (1998) The role of ocean in the response of tropical climatology to global warming: the west–east SST contrast. J Clim 11:864–875

    Article  Google Scholar 

  • Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Clim 18:4684–4700

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2011) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the heat flux feedback mechanisms. Clim Dyn 37:1271–1292

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2012) The role of atmosphere feedbacks during ENSO in the CMIP3 Models. Part III: the shortwave flux feedback. J Clim 25:4275–4293

    Article  Google Scholar 

  • Ma J, Xie S-P (2013) Regional patterns of sea surface temperature change: a source of uncertainty in future projections of precipitation and atmospheric circulation. J Clim 26:2482–2501

    Article  Google Scholar 

  • Ma C-C, Mechoso CR, Robertson AW, Arakawa A (1996) Peruvian stratus clouds and the tropical Pacific circulation: a coupled ocean–atmosphere GCM study. J Clim 9:1635–1645

    Article  Google Scholar 

  • Mechoso CR et al (1995) The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon Weather Rev 123:2825–2838

    Article  Google Scholar 

  • Meehl GA, Washington WM (1996) El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature 382:56–60

    Article  Google Scholar 

  • Neelin JD, Chou C, Su H (2003) Tropical drought regions in global warming and El Niño teleconnections. Geophys Res Lett 30:2275. doi:10.1029/2003GLO018625

    Article  Google Scholar 

  • Philander S, Gu D, Lambert G, Li T, Halpern D, Lau N-C, Pacanowski R (1996) Why the ITCZ is mostly north of the equator. J Clim 9:2958–2972

    Article  Google Scholar 

  • Ramanathan V, Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature 351:27–32

    Article  Google Scholar 

  • Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Seager R, Murtugudde R (1997) Ocean dynamics, thermocline adjustment and regulation of tropical SST. J Clim 10:521–534

    Article  Google Scholar 

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668

    Article  Google Scholar 

  • Shiogama H, Emori S, Hanasaki N, Abe M, Masutomi Y, Takahashi K, Nozawa T (2011) Observational constraints indicate risk of drying in the amazon basin. Nat Commun 2:253. doi:10.1038/ncomms1252

    Article  Google Scholar 

  • Sobel AH, Camargo SJ (2011) Projected future changes in tropical summer climate. J Clim 24:473–487

    Article  Google Scholar 

  • Taylor KE, Ronald JS, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Tokinaga H, Xie S-P, Timmermann A, McGregor S, Ogata T, Kubota H, Okumura YM (2012) Regional patterns of tropical Indo-Pacific climate change: evidence of the Walker Circulation weakening. J Clim 25:1689–1710

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007a) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1066–1070

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007b) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340

    Article  Google Scholar 

  • Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 Global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722

    Article  Google Scholar 

  • Xie S-P, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yeh S-W, Ham Y-G, Lee J-Y (2012) Changes in the tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J Clim 25:7764–7771

    Article  Google Scholar 

  • Yu J-Y, Mechoso CR (1999) Links between annual variations of Peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific. J Clim 12:3305–3318

    Article  Google Scholar 

  • Zheng Y, Lin J-L, Shinoda T (2012) The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs: upper ocean heat budget and feedback analysis. J Geophys Res 117:C05024. doi:10.1029/2011JC007746

    Google Scholar 

  • Zhou Z-Q, Xie S-P (2015) Effects of climatological model biases on the projection of tropical climate change. J Clim 28:9909–9917

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2012CB955603), the Natural Science Foundation of China (41406026 and 41376009), the Guangdong Natural Science Funds for Distinguished Young Scholar (2015A030306008), the Youth Innovation Promotion Association CAS, the Pearl River S&T Nova Program of Guangzhou (201506010094), the Strategic Priority Research Program of the CAS (XDA11010103 and XDA11010203), the US National Science Foundation, and the CAS/SAFEA International Partnership Program for Creative Research Teams. We also wish to thank the climate modeling groups (Table 1) for producing and making available their model output, the WCRP’s Working Group on Coupled Modeling (WGCM) for organizing the CMIP5 analysis activity, the Program for Climate Model Diagnostics and Intercomparison (PCMDI) for collecting and archiving the CMIP5 multi-model data, and the Office of Science, U.S. Department of Energy for supporting these datasets in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Xie, SP., Du, Y. et al. Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: the warming pattern in CMIP5 multi-model ensemble. Clim Dyn 47, 3817–3831 (2016). https://doi.org/10.1007/s00382-016-3043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3043-5

Keywords

Navigation