Skip to main content

Alternate Wetting and Drying System for Water Management in Rice

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Alternate wetting and drying (AWD) is aimed at saving water and maintaining comparable grain yields in the rice farming. It is a system of water management which involves the drying and rewatering of rice fields periodically. Rewatering is done to about 5 cm depth after the water level has fallen to 15 cm soil depth. This practice is repeated during the whole crop growing period except the flowering stage where the water level is maintained at up to 5 cm water depth. In order to get the best out of the AWD, it is important to select the right soil type, maintain the optimum plant population, apply nitrogen timely, and maintain the correct duration of wetting and drying. Fields under AWD may be ponded with water for 2–3 weeks for the cultural control of weeds. A good coordination among stakeholders may assist in attaining the maximum benefits from AWD. AWD also reduces arsenic in the rice grains and methane emission from the rice fields. It improves growth of root and canopy structure. Correct implementation of AWD can impart intended outputs on sustainable basis to tackle water scarce condition without losing rice productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akiyama H, Yagi K, Yan X (2005) Direct N2O emissions from rice paddy fields: summary of available data. Glob Biogeochem Cycles 19:GB1005

    Article  CAS  Google Scholar 

  • Anonymous (2018) Rice Knowledge bank. Saving water with Alternate wetting drying. http://www.knowledgebank.irri.org/training/fact-sheets/water-management/saving-water-alternate-wetting-drying-awd . Assessed 25 Aug 2018

  • Aranda I, Forner A, Cuesta B, Valladares F (2012) Species-specific water use by forest tree species: from the tree to the stand. Agric Water Manage. (visit on 07/25/2012) https://doi.org/10.1016/j.agwat.2012.06.024

    Article  Google Scholar 

  • Belder P, Bouman BAM, Cabangon R, Guoan L, Quilang EJP, Li Y, Spiertz JHJ, Tuong TP (2004) Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia, Agric. Water Manag 65:193–210

    Article  Google Scholar 

  • Bouman BAM, Tuong TP (2001) Field water management to save water and increase its productivity in irrigated lowland rice, Agric. Water Manag 49:11–30

    Article  Google Scholar 

  • Bouman BAM, Lampayan RM, Tuong TP (2007) Water management in rice: coping with water scarcity. International Rice Research Institute, Los Baños, 54 pp

    Google Scholar 

  • Buresh RJ, Reddy KR, van Kessel C (2008) Properties of submerged soils. In: Schepers JS, Raun WR (eds) Nitrogen in agricultural systems. American Society of Agronomy, Madison, pp 401–436

    Google Scholar 

  • Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196:7–14

    Article  CAS  Google Scholar 

  • Calzadilla A, Rehdanz K, Tol RS (2011) Water scarcity and the impact of improved irrigation management: a computable general equilibrium analysis. Agric Econ 42:305–323

    Article  Google Scholar 

  • Chauhan BS, Jabran K, Mahajan G (2017) Rice production worldwide. Springer, Cham

    Book  Google Scholar 

  • Chen TT, Xu GW, Wang ZQ, Zhang H, Yang JC, Zhang JH (2016) Expression of proteins in superior and inferior spikelets of rice during grain filling under different irrigation regimes. Proteomics 16:102–121

    Article  CAS  PubMed  Google Scholar 

  • Dobermann A, Fairhurst T (2000) Rice: nutrient disorders and nutrient management. Potash and Phosphate Institute, Singapore and International Rice Research Institute, Manila

    Google Scholar 

  • Dong NM, Brandt KK, Sørensen J, Hung NN, Hach CV, Tan PS, Dalsgaard T (2012) Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta. Vietnam Soil Biol Biochem 47:166–174

    Article  CAS  Google Scholar 

  • Ehsanullah, Akbar N, Jabran K, Habib T (2007) Comparison of different planting methods for optimization of plant population of fine rice (Oryza sativa L.) in Punjab (Pakistan). Pak J Agric Sci 44(4):597–599

    Google Scholar 

  • FAOSTAT (2016) Data. Available at: http://faostat3.fao.org/browse/FB/CC/E. Accessed 03 Mar 2016

  • Farooq M, Siddique KHM, Rehman H, Aziz T, Lee D-J, Wahid A (2011) Rice direct seeding: experiences, challenges and opportunities. Soil Tillage Res 111:87–98

    Article  Google Scholar 

  • Gilbert-Diamond D, Cottingham KL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ, Baker ER, Jackson BP, Folt CL, Karagas MR (2011) Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci 108:20656–20660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Peng S, Fahad S, Khaliq A, Huang J, Cui K, Nie L (2015) Rice management interventions to mitigate greenhouse gas emissions: a review. Environ Sci Pollut Res 22:3342–3360

    Article  Google Scholar 

  • Jabran K, Chauhan BS (2015) Weed management in aerobic rice systems. Crop Prot 78(151):163

    Google Scholar 

  • Jabran K, Farooq M, Hussain M, Ullah E, Khan MB, Shahid M, Lee DJ (2012) Efficient weeds control with penoxsulam application ensures higher productivity and economic returns of direct seeded rice. Int J Agric Biol 14:901–907

    Google Scholar 

  • Jabran K, Ullah E, Hussain M, Farooq M, Haider N, Chauhan BS (2015a) Water saving, water productivity and yield outputs of fine-grain rice cultivars under conventional and water-saving rice production systems. Exp Agric 51:567–581

    Article  Google Scholar 

  • Jabran K, Ehsanullah M, Hussain M, Farooq M, Yaseen UZ, Chauhan BS (2015b) Mulching improves water productivity, yield and quality of fine rice under water-saving rice production systems. J Agron Crop Sci 201:389–400

    Article  Google Scholar 

  • Jabran K, Ullah E, Akbar N (2015c) Mulching improves crop growth, grain length, head rice and milling recovery of basmati rice grown in water-saving production systems. Int J Agri Biol 17:920–928

    Article  Google Scholar 

  • Jabran K, Hussain M, Fahad S, Farooq M, Bajwa AA, Alharrby H, Nasim W (2016) Economic assessment of different mulches in conventional and water-saving rice production systems. Environ Sci Pollut Res 23:9156–9163

    Article  CAS  Google Scholar 

  • Jabran K, Riaz M, Hussain M, Nasim W, Zaman U, Fahad S, Chauhan BS (2017a) Water-saving technologies affect the grain characteristics and recovery of fine-grain rice cultivars in semi-arid environment. Environ Sci Pollut Res 24:12971–12981

    Article  CAS  Google Scholar 

  • Jabran K, Ullah E, Akbar N, Yasin M, Zaman U, Nasim W, Riaz M, Arjument T, Azhar MF, Hussain M (2017b) Growth and physiology of basmati rice under conventional and water-saving production systems. Arch Agron Soil Sci 63:1465–1476

    Article  Google Scholar 

  • Kirk GJD (2004) The biogeochemistry of submerged soils. Wiley, Chichester

    Book  Google Scholar 

  • Kraehmer H, Jabran K, Mennan H, Chauhan BS (2016) Global distribution of rice weeds – a review. Crop Prot 80:73–86

    Article  Google Scholar 

  • Kumar V, Ladha JK (2011) Direct seeding of rice: recent developments and future research needs. Adv Agron 111:297–413

    Google Scholar 

  • Lagomarsino A, Agnelli AE, Pastorell R, Pallara G, Rasse DP, Silvennoinen H (2016) Past water management affected GHG production and microbial community pattern in Italian rice paddy soils. Soil Biol Biochem 93:17–27

    Article  CAS  Google Scholar 

  • Lampayan RM, Rejesus RM, Singleton GR, Bouman BAM (2015) Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crop Res 170:95–108

    Article  Google Scholar 

  • Li C, Salas W, DeAngelo B, Rose S (2006) Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. J Environ Qual 35:1554–1565

    Article  CAS  PubMed  Google Scholar 

  • Linquist B, Anders MM, Adviento-Borbe MAA, Chaney RL, Nalley LL, DaRoda EFF, Van Kessel C (2014) Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob Chang Biol 21:407–417

    Article  PubMed  Google Scholar 

  • Linquist BA, Anders MM, Adviento-Borbe MAA, Chaney RL, Nalley LL, da Rosa EFF, van Kessel C (2015) Reducing greenhouse gas emissions water use, and grain arsenic levels in rice systems. Glob Chang Biol 21:407–417

    Article  PubMed  Google Scholar 

  • Liu LJ, Chen TT, Wang ZQ, Zhang H, Yang JC, Zhang JH (2013) Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crop Res 154:226–235

    Article  Google Scholar 

  • Liu H, Hussain S, Zheng M, Peng S, Huang J, Cui K, Nie L (2015) Dry direct-seeded rice as an alternative to transplanted-flooded rice in central China. Agron Sustain Dev 35:285–294

    Article  Google Scholar 

  • Mao Z (1996) Environmental impact of water-saving irrigation for rice. In: Irrigation scheduling: from theory to practice. Proceedings of the ICID/FAO workshop on irrigation scheduling, Rome, Italy, 12–13 September 1995, FAO, Rome

    Google Scholar 

  • Mekonnen MM, Hoekstra A (2016) Four billion people facing severe water scarcity. Sci Adv 2:1–6

    Article  Google Scholar 

  • Michael M. Uy, Samuel SR (2017) Performance of green super rice 5 genotype under different water management schemes. Int J Curr Microbiol App Sci 6(3):769–777

    Article  Google Scholar 

  • Nie L, Peng S, Chen M, Shah F, Huang J, Cui K, Xiang J (2012) Aerobic rice for water-saving agriculture. A Rev Agron Sustain Dev 32:411–418

    Article  Google Scholar 

  • Qin Y, Liu S, Guo Y, Liu Q, Zou J (2010) Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol Fertil Soils 46:825–834

    Article  CAS  Google Scholar 

  • Quisenberry SS, Trahan GB, Heagler AM, McManus B, Robinson JF (1992) Effect of water management as a control strategy for rice water weevil (Coleoptera: Curculionidae). J Econ Entomol 85:1007–1014

    Article  CAS  Google Scholar 

  • Rejesus RM, Palis FG, Rodriguez DGP, Lampayan RM, Bouman BAM (2011) Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: evidence from rice producers in the Philippines. Food Policy 36:280–288

    Article  Google Scholar 

  • Richards M, Sander BO (2014) Alternate wetting and drying in irrigated rice; Implementation guidance for policymakers and investors. Practical brief, climate Smart Agriculture. FAO. file:///C:/Users/MYNETC~1/AppData/Local/Temp/info-note_CCAFS_AWD_final_A4-1.pdf

    Google Scholar 

  • Rothenberg SE, Anders M, Ajami NJ, Petrosino JF, Balogh E (2016) Water management impacts rice methyl mercury and the soil microbiome. Sci Total Environ 572:608–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarwar N, Ali H, Ahmad A, Ullah E, Ahmad S, Mubeen K, Hill JE (2013) Water wise rice cultivation on calcareous soil with the addition of essential micronutrients. J Anim Plant 23(1):244–250

    Google Scholar 

  • Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O, Mbow C, Ravindranath NH, Rice CW, Abad CR, Romanovskaya A, Sperling F, Tubiello F (2014) Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Tabbal DF, Lampayan RM, Bhuiyan SI (1992) Water-efficient irrigation technique for rice. In: Murty VVN, Koga K (eds) Soil and water engineering for paddy field management. Proceedings of the international workshop on soil and water engineering for paddy field management, January 28–30, 1992. Asian Institute of Technology, Bangkok, Thailand, pp 146–159

    Google Scholar 

  • Takayoshi Y, Tuan LM, Kazunori M, Shigeki Y (2016) Alternate Wetting and Drying (AWD) irrigation technology uptake in rice paddies of the Mekong Delta, Vietnam: relationship between local conditions and the practiced technology. Asian and African Area Studies 15(2):234–256

    Google Scholar 

  • Van der Hoek W, Sakthivadivel R, Renshaw M, Silver JB, Birley MH, Koradsen F (2000) Alternate wet dry irrigation in rice cultivation: saving water and controlling malaria and Japanese encephalitis? IWMI research report 47. Colombo, International Water Management Institute (IWMI), 39 pp

    Google Scholar 

  • Wassmann R, Nelson GC, Peng SB, Sumfleth K, Jagadish SVK, Hosen Y, Rosegrant MW (2010) Rice and global climate change. In: Pandley S, Byerlee D, Dawe D, Dobermann A, Mohanty S, Rozelle S, Hardy B (eds) Rice in the global economy: strategic research and policy issues for food security. International Rice Research Institute, Los Ba˜nos, pp 411–432

    Google Scholar 

  • Williams PN, Raab A, Feldmann J, Meharg AA (2007) Market basket survey shows elevated levels of As in South Central U.S. processed rice compared to California: consequences for human dietary exposure. Environ Sci Technol 41:2178–2183

    Article  CAS  PubMed  Google Scholar 

  • Wissuwa M, Ismail AM, Graham RD (2008) Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil 306:37–48

    Article  CAS  Google Scholar 

  • Xu Y, Ge J, Tian S, Li S, Nguy-Robertson AL, Zhan M, Cao C (2015) Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci Total Environ 505:1043–1052

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Zhang JH (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LL (2002) Abscisic acid and cytokinins in the root exudates and leaves and their relations with senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta 215:645–652

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Zhang JH, Ye YX, Wang ZQ, Zhu QS, Liu LJ (2004) Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ 27:1055–1064

    Article  CAS  Google Scholar 

  • Yao FX, Huang JL, Cui KH, Nie LX, Xiang J, Liu XJ, Wu W, Chen MX, Peng SB (2012) Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crop Res 126:16–22

    Article  Google Scholar 

  • Ye YS, Liang XQ, Chen YX, Liu J, Gu JT, Guo R, Li L (2013) Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crop Res 144:212–224

    Article  Google Scholar 

  • Yeston J, Coontz R, Smith J, Ash C (2006) A thirsty world. Science 313(5790):1067

    Article  CAS  Google Scholar 

  • Zhang H, Zhang SF, Yang JC, Zhang JH, Wang ZQ (2008) Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agron J 100:726–734

    Article  Google Scholar 

  • Zhang H, Xue YG, Wang ZQ, Yang JC, Zhang JH (2009) An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci 49:2246–2260

    Article  Google Scholar 

  • Zhang H, Chen TT, Wang ZQ, Yang JC, Zhang JH (2010) Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. J Exp Bot 61:3719–3733

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li HW, Yuan LM, Wang ZQ, Yang JC, Zhang JH (2012) Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. J Exp Bot 63:215–227

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5:e10780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu YG, Williams PN, Meharg AA (2008) Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut 154:169–171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mubeen, K., Jabran, K. (2019). Alternate Wetting and Drying System for Water Management in Rice. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_6

Download citation

Publish with us

Policies and ethics