Skip to main content

Advertisement

Log in

Rice management interventions to mitigate greenhouse gas emissions: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world’s population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abao EB, Bronson KF, Wassmann R, Singh U (2000) Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rain fed conditions. Nutr Cycl Agroecosyst 58:131–139. doi:10.1023/A:1009842502608

    CAS  Google Scholar 

  • Adhya TK, Bharati K, Mohanty SR, Ramakrishnan B, Rao VR, Sethunathan N, Wassmann R (2000) Methane emission from rice fields at Cuttack, India. Nutr Cycl Agroecosyst 58:95–105. doi:10.1023/A:1009886317629

    CAS  Google Scholar 

  • Ahmad S, Li CF, Dai GZ, Zhan M, Wang JP, Pan SG, Cao CG (2009) Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil Tillage Res 106:54–61. doi:10.1016/j.still.2009.09.005

    Google Scholar 

  • Ali MA, Lee CH, Lee YB, Kim PJ (2009) Silicate fertilization in no-tillage rice farming for mitigation of methane emission and increasing rice productivity. Agric Ecosyst Environ 132:16–22. doi:10.1016/j.agee.2009.02.014

    CAS  Google Scholar 

  • Ali MA, Farouque MG, Haque M, Kabir A u (2012) Influence of soil amendments on mitigating methane emissions and sustaining rice productivity in paddy soil ecosystems of Bangladesh. J Environ Sci Nat Resour 5:179–185. doi:10.3329/jesnr.v5i1.11574

    Google Scholar 

  • Armstrong J, Armstrong W (1988) Phragmites australis: a preliminary study of soil oxidizing sites and internal gas transport capacity. New Phytol 108:373–382. doi:10.1111/j.1469-8137.1988.tb04177.x

    Google Scholar 

  • Aulakh MS, Bodenbender J, Wassmann R, Rennenberg H (2000) Methane transport capacity of rice plants, II. Variations among different rice cultivars and relationship with morphological characteristics. Nutr Cycl Agroecosyst 58:367–375. doi:10.1023/A:1009839929441

    CAS  Google Scholar 

  • Aulakh MS, Khera TS, Doran JW, Bronson KF (2001a) Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure. Biol Fertil Soils 34:375–389. doi:10.1007/s003740100420

    CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Rennenberg H (2001b) Impact of root exudates of different cultivars and plant developmental stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230:77–86. doi:10.1023/A:1004817212321

    CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Rennenberg H (2002) Methane transport capacity of twenty two rice cultivars from five major Asian rice growing countries. Agric Ecosyst Environ 91:59–71. doi:10.1016/S0167-8809(01)00260-2

    CAS  Google Scholar 

  • Babu JY, Nayak DR, Adhya TK (2006) Potassium application reduces methane emission from a flooded field planted to rice. Biol Fertil Soils 42:532–554. doi:10.1007/s00374-005-0048-3

    Google Scholar 

  • Banger K, Tian H, Lu C (2012) Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob Chang Biol 18:3259–3267. doi:10.1111/j.1365-2486.2012.02762.x

    Google Scholar 

  • Beare MH, Gregorich EG, St-Georges P (2009) Compaction effects on CO2 and N2O production during drying and rewetting of soil. Soil Biol Biochem 41:611–621. doi:10.1016/j.soilbio.2008.12.024

    CAS  Google Scholar 

  • Beri V, Sidhu BS, Bahl GS, Bhat AK (1995) Nitrogen and phosphorus transformations as affected by crop residue management practices and their influence on crop yields. Soil Use Manag 11:51–54. doi:10.1111/j.1475-2743.1995.tb00496.x

    Google Scholar 

  • Bhatia A, Sasmal S, Jain N, Pathak H, Kumar R, Singh A (2010) Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agric Ecosyst Environ 136:247–253. doi:10.1016/j.agee.2010.01.004

    CAS  Google Scholar 

  • Bhattacharyya P, Roy KS, Neogi S, Adhya TK, Rao KS, Manna MC (2012) Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil Tillage Res 124:119–130. doi:10.1016/j.still.2012.05.015

    Google Scholar 

  • Bloom A, Swisher M (2010) Emissions from rice production. In: Cutler JC (ed) Encyclopedia of Earth. Accessed at June 15, 2011. Online available: http://www.eoearth.org/article/Emissions_from_Rice_Production?topic=54486

  • Brown RH (1999) Agronomic implications of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic, San Diego, pp 473–507

    Google Scholar 

  • Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci U S A 107:12052–12057. doi:10.1073/pnas.0914216107

    CAS  Google Scholar 

  • Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy field. Plant Cell Environ 20:1175–1183. doi:10.1046/j.1365-3040.1997.d01-142.x

    CAS  Google Scholar 

  • Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196:7–14. doi:10.1023/A:1004263405020

    CAS  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Ann Rev Environ Resour 28:315–358. doi:10.1146/annurev.energy.28.040202.122858

    Google Scholar 

  • Corton TM, Bajita J, Grospe F, Pamplona R, Wassmann R, Lantin RS (2000) Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines). Nutr Cycl Agroecosyst 58:37–53. doi:10.1023/A:1009826131741

    CAS  Google Scholar 

  • Das S, Adhya TK (2014) Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice. Geoderma 213:185–192. doi:10.1016/j.geoderma.2013.08.011

    CAS  Google Scholar 

  • Das K, Baruah KK (2008) Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant. Physiol Plant 134:303–312. doi:10.1111/j.1399-3054.2008.01137.x

    CAS  Google Scholar 

  • Denier van der Gon HAC (2000) Changes in CH4 emission from rice fields from 1960 to 1990s: 1. The declining use of organic inputs in rice farming. Global Biogeochem Cycles 13:1053–1062. doi:10.1029/1999GB900048

    Google Scholar 

  • Denier van der Gon HAC, Neue HU (1994) Impact of gypsum application on methane emission from a wetland rice field. Global Biogeochem cycles 8:127–134. doi:10.1029/94GB00386

    CAS  Google Scholar 

  • Denier van der Gon HAC, Kropff MJ, Van Breemen N et al (2002) Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proc Natl Acad Sci U S A 99:12021–12024. doi:10.1016/j.geoderma.2013.08.011

    CAS  Google Scholar 

  • Dobermann A, Witt C, Dawe D et al (2002) Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crop Res 74:37–66. doi:10.1016/S0378-4290(01)00197-6

    Google Scholar 

  • Dong H, Yao Z, Zheng X et al (2011) Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmos Environ 45:1095–1101. doi:10.1016/j.atmosenv.2010.11.039

    CAS  Google Scholar 

  • FAOSTAT (2011) FAOSTAT agricultural data. http://faostat.fao.org

  • Feng J, Chen C, Zhang Y, Song Z, Deng A, Zheng C, Zhang W (2013) Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis. Agric Ecosyst Environ 164:220–228. doi:10.1016/j.agee.2012.10.009

    Google Scholar 

  • Freney JR (1997) Emission of nitrous oxide from soils used for agriculture. Nutr Cycl Agroecosyst 49:1–6. doi:10.1023/A:1009702832489

    CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Google Scholar 

  • Ghosh S, Majumdar D, Jain MC (2003) Methane and nitrous oxide emissions from an irrigated rice of North India. Chemosphere 51:181–195. doi:10.1016/S0045-6535(02)00822-6

    CAS  Google Scholar 

  • Global Methane Initiative (2010) Global methane emissions and mitigation opportunities. GMI, [Online] Available: www.globalmethane.org (August 17, 2011).

  • Gregorich EG, Rochette P, Vandenbygaart AJ, Angers DA (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in eastern Canada. Soil Tillage Res 83:53–72. doi:10.1016/j.still.2005.02.009

    Google Scholar 

  • Gutierrez J, Kim SY, Kim PJ (2013) Effect of rice cultivar on CH 4 emissions and productivity in Korean paddy soil. Field Crop Res 146:16–24

    Google Scholar 

  • Hadi A, Inubushi K, Yagi K (2010) Effect of water management on greenhouse gas emissions and microbial properties of paddy soils in Japan and Indonesia. Paddy Water Environ 8:319–324

    Google Scholar 

  • Han C, Zhong W, Shen W, Cai Z, Liu B (2013) Transgenic Bt rice has adverse impacts on CH4 flux and rhizospheric methanogenic archaea and methanotrophic bacterial communities. Plant Soil 369:297–316. doi:10.1007/s11104-012-1522-y

    CAS  Google Scholar 

  • Harada H, Kobayashi H, Shindo H (2007) Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: life-cycle inventory analysis. Soil Sci Plant Nutr 53:668–677. doi:10.1111/j.1747-0765.2007.00174.x

    CAS  Google Scholar 

  • Hou AX, Chen GX, Wang ZP, Van Cleemput O, Jr Patrick WH (2000) Methane and nitrous oxide emissions form a rice field in relation to soil redox and microbiological processes. Soil Sci Soc Am J 64:2180–2186. doi:10.2136/sssaj2000.6462180x

    CAS  Google Scholar 

  • Hou H, Peng S, Xu J, Yang S, Mao Z (2012) Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in southeast China. Chemosphere 89:884–892. doi:10.1016/j.chemosphere.2012.04.066

    CAS  Google Scholar 

  • Hou P, Li G, Wang S et al (2013) Methane emissions from rice fields under continuous straw return in the middle-lower reaches of the Yangtze River. J Environ Sci 25:1874–1881. doi:10.1016/s1001-0742(12)60273-3

    CAS  Google Scholar 

  • Huang SH, Jiang WW, Lu J, Cao JM (2005) Influence of nitrogen and phosphorus fertilizers on N2O emissions in rice fields. China Environ Sci 25:540–543

    CAS  Google Scholar 

  • Inubushi K, Sugii H, Nishino S, Nishino E (2001) Effects of aquatic weeds on methane emission from submerged paddy soils. Am J Bot 88:975–979

    CAS  Google Scholar 

  • Inubushi K, Cheng WG, Aonuma S, Hoque MM, Kobayashi K, Miura S, Kim HY, Okada M (2003) Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Glob Chang Biol 9:1458–1464. doi:10.1046/j.1365-2486.2003.00665.x

    Google Scholar 

  • IPCC (1997) Revised 1996 IPCC guidelines for national greenhouse gas inventories workbook, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 81–82

    Google Scholar 

  • IRRI (1999). Biodiversity—maintaining the balance, 1997–1998 annual report, Los Baños, Philippines.

  • Itoh M, Sudo S, Mori S et al (2011) Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric Ecosyst Environ 14:359–372. doi:10.1016/j.agee.2011.03.019

    Google Scholar 

  • Jacinthe PA, Lal R (2005) Labile carbon and methane uptake as affected by tillage intensity in a Mollisol. Soil Tillage Res 80:35–45. doi:10.1016/j.still.2004.02.018

    Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems—a soil science perspective. Nutr Cycl Agroecosyst 104:399–417. doi:10.1016/j.agee.2004.01.040

    CAS  Google Scholar 

  • Jia Z, Cai Z, Tsuruta H (2006) Effect of rice cultivar on CH4 production potential of rice soil and CH4 emission in a pot experiment. Soil Sci Plant Nutr 52:341–348. doi:10.1111/j.1747-0765.2006.00043.x

    CAS  Google Scholar 

  • Jiang Y, Wang L, Yan X, Tian Y, Deng A, Zhang W (2013) Super rice cropping will enhance rice yield and reduce CH4 emission: a case study in Nanjing, China. Rice Sci 20:427–433

    Google Scholar 

  • Jin F, Yang H, Zhao QG (2000) Research progress of soil organic carbon reserves and its impacting factors. Soil 1:11–17, in Chinese, with English abstract

    Google Scholar 

  • Kasterine A, Vanzetti D (2010) The effectiveness, efficiency and equity of market-based instruments to mitigate GHG emission from the agri-food sector, in UNCTAD Trade and Environment Review 2009/2010, Geneva. Available at http://www.intracen.org/uploadedFiles/intracenorg/Content/Exporters/Sectors/Fair_trade_and_environmental_exports/Climate_change/TER_UNCTAD_KasterineVanzetti.pdf

  • Katayanagi K, Furukawa Y, Fumoto T, Hosen Y (2012) Validation of the DNDC-rice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Sci Plant Nutr 58:360–372. doi:10.1080/00380768.2012.682955

    CAS  Google Scholar 

  • Kerdchoechuen O (2005) Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield. Agric Ecosyst Environ 108:155–163. doi:10.1016/j.agee.2005.01.004

    CAS  Google Scholar 

  • Kesheng S, Zhen L (1997) Effect of rice cultivars and fertilizer management on methane emission in a rice paddy in Beijing. Nutr Cycl Agroecosyst 49:139–146. doi:10.1023/A:1009734702524

    Google Scholar 

  • Khaliq A, Gondal MR, Matloob A, Ullah E, Hussain S, Murtaza G (2013a) Chemical weed control in wheat under different rice residue management options. Pak J Weed Sci Res 19:1–14

    Google Scholar 

  • Khaliq A, Shakeel M, Matloob A, Hussain S, Tanveer A, Murtaza G (2013b) Influence of tillage and weed control practices on growth and yield of wheat. Philipp J Crop Sci 38:54–62

    Google Scholar 

  • Kludze HK, Delaune RD, Patrick WH (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci Soc Am J 57:386–200. doi:10.2136/sssaj1993.03615995005700020017x

    CAS  Google Scholar 

  • Ko JY, Kang HW (2000) The effects of cultural practices on methane emission from rice fields. Nutr Cycl Agroecosyst 58:311–314. doi:10.1023/A:1009867208059

    Google Scholar 

  • Koga N, Tajima R (2011) Assessing energy efficiencies and greenhouse gas emissions under bioethanol oriented paddy rice production in northern Japan. J Environ Manag 92:967–973. doi:10.1016/j.jenvman.2010.11.008

    CAS  Google Scholar 

  • Lal R (2003) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22:151–184. doi:10.1080/713610854

    Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50. doi:10.1016/S1164-5563(01)01067-6

    Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144. doi:10.1038/447143a

    CAS  Google Scholar 

  • Leon JC, Carpena AL (1995) Morphology-based diversity analysis of improved irrigated lowland rice (Oryza sativa L.) varieties in the Philippines. Philipp J Crop Sci 20:113–121

    Google Scholar 

  • Li CF, Kou ZK, Yang JH, Cai ML, Wang JP, Cao CG (2010) Soil CO2 fluxes from direct seeding rice fields under two tillage practices in central China. Atmos Environ 44:2696–2704. doi:10.1016/j.atmosenv.2010.04.045

    CAS  Google Scholar 

  • Li D, Liu M, Cheng Y, Wang D, Qin J, Jiao J, Li H, Hu F (2011) Methane emissions from double-rice cropping system under conventional and no tillage in southeast China. Soil Tillage Res 113:77–81. doi:10.1016/j.still.2011.02.006

    Google Scholar 

  • Li CF, Zhou DN, Kou ZK, Zhang ZS, Wang JP, Cai ML, Cao CG (2012) Effect of tillage and N fertilizers on CH4 and CO2 emissions and soil organic carbon in paddy fields of central China. PLoS One 7:e34642. doi:10.1371/journal.pone.0034642

    CAS  Google Scholar 

  • Li CF, Zhang ZS, Guo LJ, Cai ML, Cao CG (2013) Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods. Atmos Environ 80:438–444

    CAS  Google Scholar 

  • Liang W, Shi Y, Zhang H, Yue J, Huang GH (2007) Greenhouse gas emissions from northeast China rice fields in fallow season. Pedosphere 17:630–638. doi:10.1016/S1002-0160(07)60075-7

    CAS  Google Scholar 

  • Lindau CW, Bollich PK (1993) Methane emissions from Louisiana first and ratoon crop rice. Soil Sci 156:42–48

    CAS  Google Scholar 

  • Lindau CW, Bollich PK, Delaune RD, Patrick WH, Law VJ (1991) Effect of urea fertilizer and environmental factors on CH4 emissions from a Louisiana USA rice field. Plant Soil 136:195–203. doi:10.1007/BF02150050

    CAS  Google Scholar 

  • Lindau CW, Bollich PK, Delaune RD (1995) Effect of rice variety on methane emission from Louisiana rice. Agric Ecosyst Environ 54:109–114. doi:10.1016/0167-8809(95)00587-I

    Google Scholar 

  • Linquist BA, Adviento-Borbe MA, Pittelkow CM, Van Kessel C, Van Groenigen KJ (2012a) Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop Res 135:10–21. doi:10.1016/j.fcr.2012.06.007

    Google Scholar 

  • Linquist BA, Van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, Van Kessel C (2012b) An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Chang Biol 18:194–209. doi:10.1111/j.1365-2486.2011.02502.x

    Google Scholar 

  • Liou RM, Huang SN, Lin CW, Chen SH (2003) Methane emission from fields with three various rice straw treatments in Taiwan paddy soils pesticides. J Environ Sci Health B 38:511–527. doi:10.1081/PFC-120021670

    Google Scholar 

  • Liu S, Qin Y, Zou J, Liu Q (2010) Effects of water regime during rice growing season on annual direct N2O emission in a paddy rice–winter wheat rotation system in southeast China. Sci Total Environ 408:906–913. doi:10.1016/j.scitotenv.2009.11.002

    CAS  Google Scholar 

  • Liu XY, Qu JJ, Li LQ, Zhang AF, Jufeng Z, Zheng JW, Pan GX (2012) Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies? A cross site field experiment from South China. Ecol Eng 42:168–173. doi:10.1016/j.ecoleng.2012.01.016

    Google Scholar 

  • Liu S, Zhang Y, Lin F, Zhang L, Zou J (2013) Methane and nitrous oxide emissions from direct-seeded and seedling-transplanted rice paddies in southeast China. Plant Soil 13:1878–1887. doi:10.1007/s11104-013-1878-7

    Google Scholar 

  • Liu H, Hussain S, Peng S, Huang J, Cui K, Nie L (2014a) Potentially toxic elements concentration in milled rice differ among various planting patterns. Field Crop Res 168:19–26. doi:10.1016/j.fcr.2014.08.007

    Google Scholar 

  • Liu H, Hussain S, Zheng M, Peng S, Huang J, Cui K, Nie L (2014b) Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China. Agron Sustain Dev doi:10.1007/s13593-014-0239-0

  • Lou Y, Inubushi K, Mizuno T et al (2008) CH4 emission with differences in atmospheric CO2 enrichment and rice cultivars in a Japanese paddy soil. Glob Chang Biol 14:2678–2687. doi:10.1111/j.1365-2486.2008.01665.x

    Google Scholar 

  • Lu Y, Wassmann R, Neue HU, Huang C, Bueno CS (2000) Methanogenic responses to exogenous substrate in anaerobic rice soils. Soil Biol Biochem 32:1683–1690. doi:10.1016/S0038-0717(00)00085-7

    CAS  Google Scholar 

  • Lyman N, Nalley LL (2013) Incentivizing net greenhouse gas emissions reductions in rice production: the case of Arkansas rice. J Agric Appl Econ 45:171–185

    Google Scholar 

  • Ma J, Ma E, Xu H, Yagi K, Cai Z (2009) Wheat straw management affects CH4 and N2O emissions from rice fields. Soil Biol Biochem 41:1022–1028. doi:10.1016/j.soilbio.2009.01.024

    CAS  Google Scholar 

  • Ma K, Qiu Q, Lu Y (2010) Microbial mechanism for rice variety control on methane emission from rice field soil. Glob Chang Biol 16:3085–3095. doi:10.1111/j.1365-2486.2009.02145.x

    Google Scholar 

  • McTaggart IP, Clayton H, Smith KA (1994) Nitrous oxide flux from fertilized grassland: strategies for reducing emissions. In: van Ham J, Janssen LJ, Swart RJ (eds) Non-CO2 greenhouse gases. Kluwer Academic, Netherlands, pp 421–426

    Google Scholar 

  • Mei XQ, Ye ZH, Wong MH (2009) The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environ Pollut 157:2550–2557. doi:10.1016/j.envpol.2009.02.037

    CAS  Google Scholar 

  • Mei XQ, Wong MH, Yang Y, Dong HY, Qiu RL, Ye ZH (2012) The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere. Environ Pollut 165:109–117. doi:10.1016/j.envpol.2012.02.018

    CAS  Google Scholar 

  • Minamikawa K, Sakai N (2005) The effect of water management based on soil redox potential on methane emission from two kinds of paddy soils in Japan. Agric Ecosyst Environ 107:397–407. doi:10.1016/j.agee.2004.08.006

    CAS  Google Scholar 

  • Mitra S, Jain MC, Kumar S, Bandyopadhya SK, Kalra N (1999) Effect of rice cultivars on methane emission. Agric Ecosyst Environ 73:177–183. doi:10.1016/S0167-8809(99)00015-8

    CAS  Google Scholar 

  • Naser HM, Nagata O, Tamura S, Hatano R (2007) Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Sci Plant Nutr 53:95–101. doi:10.1111/j.1747-0765.2007.00105.x

    CAS  Google Scholar 

  • Nayak D, Cheng K, Wang W et al (2013) Technical options to reduce greenhouse gas emissions from croplands and grasslands in China. UK-China Sustainable Agriculture Innovation Network-SAIN. Policy brief No. 9, October 2013

  • Nyamadzawo G, Wuta M, Chirinda N, Mujuru L, Smith JL (2013) Greenhouse gas emissions from intermittently flooded (Dambo) rice under different tillage practices in chiota smallholder farming area of Zimbabwe. Atmos Clim Sci 3:13–20. doi:10.4236/acs.2013.34A003

    Google Scholar 

  • Oenema O, Wrage N, Velthof GL, Van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72:51–65. doi:10.1007/s10705-004-7354-2

    CAS  Google Scholar 

  • Omonode RA, Vyn TJ, Smith DR, Hegymegi P, Ga A (2007) Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn–soybean rotations. Soil Tillage Res 95:182–195. doi:10.1016/j.still.2006.12.004

    Google Scholar 

  • Pandey D, Agrawal M, Bohra JS (2012) Greenhouse gas emissions from rice crop with different tillage permutations in rice-wheat system. Agric Ecosyst Environ 159:133–144. doi:10.1016/j.agee.2012.07.008

    CAS  Google Scholar 

  • Pathak H, Chakrabarti B, Bhatia A, Jain N, Aggarwal PK (2012) Potential and cost of low carbon technologies in rice and wheat systems: a case study for the Indo-Gangetic Plains. In: Pathak H, Aggarwal PK (eds) Low carbon technologies for agriculture: a study on rice and wheat systems in the Indo-Gangetic Plains, Indian Agricultural Research Institute, New Delhi, India pp 12–40

  • Peng S, Hou H, Xu J, Mao Z, Aabudu S, Luo Y (2011) Nitrous oxide emissions from paddy fields under different water managements in southeast China. Paddy Water Environ 9:403–411. doi:10.1007/s10333-011-0275-1

    Google Scholar 

  • Pittelkow CM, Adviento-Borbe MA, Hill JE, Six J, Van Kessel C, Linquist BA (2013) Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agric Ecosyst Environ 177:10–20. doi:10.1016/j.agee.2013.05.011

    CAS  Google Scholar 

  • Qin Y, Liu S, Guo Y, Liu Q, Zou J (2010) Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol Fertil Soils 46:825–834. doi:10.1007/s00374-010-0493-5

    CAS  Google Scholar 

  • Reddy KR, Patrick WH (1976) Yield and nitrogen utilization by rice as affected by method and time of application of labeled nitrogen. Agron J 68:965–969

    Google Scholar 

  • Reicosky DC, Archer DW (2007) Moldboard plow tillage depth and short-term carbon dioxide release. Soil Tillage Res 94:109–121. doi:10.1016/j.still.2006.07.004

    Google Scholar 

  • Riya S, Zhou S, Watanabe Y, Sagehashi M, Terada A, Hosomi M (2012) CH4 and N2O emissions from different varieties of forage rice (Oryza sativa L.) treating liquid cattle waste. Sci Total Environ 419:178–186. doi:10.1016/j.scitotenv.2012.01.014

    CAS  Google Scholar 

  • Rochette PH (2008) No-till only increases N2O emissions in poorly aerated soils. Soil Tillage Res 101:97–100. doi:10.1016/j.still.2008.07.011

    Google Scholar 

  • Rodhe H (1990) A comparison of the contribution of various gases to the greenhouse. Science 248:1217–1219. doi:10.1126/science.248.4960.1217

    CAS  Google Scholar 

  • Sainju UM, Jabro JD, Caesar-Tonthat T (2010) Tillage, cropping sequence, and nitrogen fertilization effects on dry land soil carbon dioxide emission and carbon content. J Environ Qual 39:935–945. doi:10.2134/jeq2009.0223

    CAS  Google Scholar 

  • Sato S, Yamaji E, Kuroda T (2011) Strategies and engineering adaptations to disseminate SRI methods in large-scale irrigation systems in Eastern Indonesia. Paddy Water Environ 9:79–88. doi:10.1007/s10333-010-0242-2

    Google Scholar 

  • Schils RLM, Verhagen A, Aarts HFM, Sebek LBJ (2005) A farm level approach to define successful mitigation strategies for GHG emissions from ruminant livestock systems. Nutr Cycl Agroecosyst 71:163–175. doi:10.1007/s10705-004-2212-9

    Google Scholar 

  • Schlesinger WH (1999) Carbon sequestration in soils. Science 284:2095. doi:10.1126/science.284.5423.2095

    CAS  Google Scholar 

  • Schutz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res 94:16405–16416. doi:10.1029/JD094iD13p16405

    Google Scholar 

  • Setyanto P, Makarim AK, Fagi AM, Wassmann R, Buendia LV (2000) Crop management affecting methane emissions from irrigated and rainfed rice in Central Java (Indonesia). Nutr Cycl Agroecosyst 58:85–93. doi:10.1007/978-94-010-0898-3_8

    Google Scholar 

  • Setyanto P, Rosenani AB, Boer R, Fauziah CI, Khanif MJ (2004) The effect of rice cultivars on methane emission from irrigated rice field. Indones J Agric Sci 5:20–31

    Google Scholar 

  • Shang QY, Yang XX, Gao CM, Gao CM, Wu PP, Liu JJ, Xu YC, Shen QR, Zou JW, Guo SW (2011) Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob Chang Biol 17:2196–2210. doi:10.1111/j.1365-2486.2010.02374.x

    Google Scholar 

  • Shin YK, Yun SH (2000) Varietal differences in methane emission from Korean rice cultivars. Nutr Cycl Agroecosyst 58:315–320. doi:10.1023/A:1009819324897

    CAS  Google Scholar 

  • Six J, Ogle MS, Breidt FJ, Conant TR, Mosier RA, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Glob Chang Biol 10:155–160. doi:10.1111/j.1529-8817.2003.00730.x

    Google Scholar 

  • Smith P (2004) Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agron 20:229–236. doi:10.1016/j.eja.2003.08.002

    CAS  Google Scholar 

  • Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag 20:255–263. doi:10.1111/j.1475-2743.2004.tb00366.x

    Google Scholar 

  • Smith P, Goulding KW, Smith KA, Powlson DS, Smith JU, Falloon PD, Coleman K (2001) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr Cycl Agroecosyst 60:237–252. doi:10.1023/A:1012617517839

    Google Scholar 

  • Smith P, Martino D, Cai Z et al (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 497–540

    Google Scholar 

  • Smith P, Martino D, Cai Z et al (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363:789–813. doi:10.1098/rstb.2007.2184

    CAS  Google Scholar 

  • Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 133:247–266. doi:10.1016/j.agee.2009.04.021

    CAS  Google Scholar 

  • Song WZ, Wang SB, Su WH, Zeng JH (1996) Study on the main greenhouse gases N2O, CH4 and CO2 emission in China. Environ Sci 17:85–92, in Chinese, with English abstract

    Google Scholar 

  • Tenuta M, Beauchamp EG (2003) Nitrous oxide production from granular nitrogen fertilizers applied to a silt loam soil. Can J Soil Sci 83:521–532. doi:10.4141/S02-062

    CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264. doi:10.1073/pnas.1116437108

    CAS  Google Scholar 

  • Tokida T, Cheng WG, Adachi M, Matsunami T, Nakamura H, Okada M, Hasegawa T (2013) The contribution of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy soil in free-air [CO2] enrichment and soil warming experiments. Plant Soil 364:131–143. doi:10.1007/s11104-012-1356-7

    CAS  Google Scholar 

  • Towprayoon S, Smakgahn K, Poonkaew S (2005) Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 59:1549–1556. doi:10.1016/j.chemosphere.2005.02.009

    Google Scholar 

  • Tyagi L, Kumari B, Singh SN (2010) Water management: a tool for methane mitigation from irrigated paddy fields. Sci Total Environ 408:1085–1090. doi:10.1016/j.scitotenv.2009.09.010

    CAS  Google Scholar 

  • Van Beek CL, Meerburg BG, Schils RLM, Verhagen J, Kuikman PJ (2010) Feeding the world’s increasing population while limiting climate change impacts: linking N2O and CH4 emissions from agriculture to population growth. Environ Sci Policy 13:89–96. doi:10.1016/j.envsci.2009.11.001

    Google Scholar 

  • Van Nguyen N, Ferrero A (2006) Meeting the challenges of global rice production. Paddy Water Environ 4:1–9. doi:10.1007/s10333-005-0031-5

    Google Scholar 

  • Verge XPC, De Kimpe C, Desjardins RL (2007) Agricultural production, greenhouse gas emissions and mitigation potential. Agric For Meteorol 142:255–269. doi:10.1016/j.agrformet.2006.06.011

    Google Scholar 

  • Wang B, Neue HU, Samonte HP (1997) Effect of cultivar difference (‘IR72’, ‘IR65598’ and ‘Dular’) on methane emission. Agric Ecosyst Environ 62:31–40. doi:10.1016/S0167-8809(96)01115-2

    Google Scholar 

  • Wassmann R, Schutz H, Papen H et al (1993) Quantification of methane emissions from Chinese rice fields (Zhejiang Province) as influenced by fertilizer treatment. Biogeochemistry 11:83–101. doi:10.1007/BF00004136

    Google Scholar 

  • Wassmann R, Buendia LV, Lantin RS et al (2000a) Mechanisms of crop management impact on methane emissions from rice fields in Los Banos, Philippines. Nutr Cycl Agroecosyst 58:107–119. doi:10.1023/A:1009838401699

    CAS  Google Scholar 

  • Wassmann R, Lantin RS, Neue HU, Buendia LV, Corton TM, Lu Y (2000b) Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr Cycl Agroecosyst 58:23–36. doi:10.1023/A:1009874014903

    CAS  Google Scholar 

  • Wassmann R, Aulakh MS, Lantin RS, Rennenberg H, Aduna JB (2002) Methane emission patterns from rice fields planted to several rice cultivars for nine seasons. Nutr Cycl Agroecosyst 64:111–124. doi:10.1023/A:1021171303510

  • Wassmann R, Neue HU, Ladha JK, Aulakh MS (2004) Mitigating greenhouse gas emissions from rice–wheat cropping systems in Asia. Environ Dev Sustain 6:65–90. doi:10.1007/978-94-017-3604-6-4

    Google Scholar 

  • Watanabe A, Katoh K, Kimum M (1993) Effect of rice straw application on CI-h emission from paddy fields, I. Effect of weathering of rice straw in the field during off-crop season. Soil Sci Plant Nutr 39:701–706

    CAS  Google Scholar 

  • Watanabe A, Kajiwara M, Tashiro T, Kimura M (1995) Influence of rice cultivars on methane emission from paddy fields. Plant Soil 176:51–56. doi:10.1007/BF00017674

    CAS  Google Scholar 

  • Win KT, Nonaka R, Toyota K, Motobayashi T, Hosomi M (2010) Effects of option mitigating ammonia volatilization on CH4 and N2O emissions from a paddy field fertilized with anaerobically digested cattle slurry. Biol Fertil Soils 46:589–595. doi:10.1007/s00374-010-0465-9

    Google Scholar 

  • Win KT, Nonaka R, Win AT, Sasada Y, Toyota K, Motobayashi T (2013) Effects of water saving irrigation and rice variety on greenhouse gas emissions and water use efficiency in a paddy field fertilized with anaerobically digested pig slurry. Paddy Water Environ. doi:10.1007/s10333-013-0406-y

    Google Scholar 

  • Wu FL, Zhang HL, Li L, Chen F, Huang FQ, Xiao XP (2009) Characteristics of CH4 emission and greenhouse effects in double paddy soil with conservation tillage. Sci Agric Sin 41:2703–2709 (In Chinese)

    Google Scholar 

  • Xiao XP, Wu FL, Huang FQ, Li Y, Sun GF, Hu Q, He YY, Chen F, Yang GL (2007) Greenhouse air emission under different pattern of rice-straw returned to field in double rice area. Res Agr Mod 28:629–632 (in Chinese)

    Google Scholar 

  • Xie JF, Li YE (2002) A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils. Chin Agric Meteorol 23:47–52 (in Chinese)

    Google Scholar 

  • Xing GX, Cao YC, Shi SL, Sun GQ, Du LJ, Zhu JG (2002) Denitrification in underground saturated soil in a rice paddy region. Soil Biol Biochem 34:1593–1598. doi:10.1016/S0038-0717(02)00143-8

    CAS  Google Scholar 

  • Xing GX, Zhao X, Xiong ZQ, Yan XY, Xua H, Xie YX, Shi SL (2009) Nitrous oxide emission from paddy fields in China. Acta Ecol Sin 29:45–50. doi:10.1016/j.chnaes.2009.04.006

    Google Scholar 

  • Xu X, Boeckx P, Wang Y, Huang Y, Zheng X, Hu F, Van Cleemput O (2002) Nitrous oxide and methane emissions during rice growth and through rice plants: effect of dicyandiamide and hydroquinone. Biol Fertil Soils 36:53–58. doi:10.1007/s00374-002-0503-3

    CAS  Google Scholar 

  • Yagi K, Tsuruta H, Kanda K, Minami K (1996) Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Glob Biogeochem Cycles 10:255–267. doi:10.1029/96GB00517

    CAS  Google Scholar 

  • Yan X, Shi S, Du L, Xing G (2000) Pathways of N2O emission from rice paddy soil. Soil Biol Biochem 32:437–440. doi:10.1016/S0038-0717(99)00175-3

    CAS  Google Scholar 

  • Yan X, Ohara T, Akimoto H (2003) Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries. Glob Chang Biol 9:237–254. doi:10.1046/j.1365-2486.2003.00564.x

    Google Scholar 

  • Yan X, Yagi K, Akiyama H, Akimoto H (2005) Statistical analysis of the major variables controlling methane emission from rice fields. Glob Chang Biol 11:1131–1141. doi:10.1111/j.1365-2486.2005.00976.x

    Google Scholar 

  • Yang S, Peng S, Xu J, Luo Y, Li D (2012) Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation. Phys Chem Earth 54:30–37. doi:10.1016/j.pce.2011.08.020

    CAS  Google Scholar 

  • Yao Z, Zheng X, Dong H, Wang R, Mei B, Zhu J (2012) A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric Ecosyst Environ 152:1–9. doi:10.1016/j.agee.2012.02.004

    CAS  Google Scholar 

  • Yu KW, Patrick WH (2004) Redox window with minimum global warming potential contribution from rice soils. Soil Sci Soc Am J 68:2086–2091. doi:10.2136/sssaj2003.1952

    CAS  Google Scholar 

  • Yu KW, Chen GX, Patrick WH (2004) Reduction of global warming potential contribution from a rice field by irrigation, organic matter, and fertilizer management. Glob Biogeochem Cycles 18:GB3018

    Google Scholar 

  • Zhang H, Xue YG, Wang ZQ, Yang JC, Zhang JH (2009) Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crop Res 113:31–40. doi:10.1016/j.fcr.2009.04.004

    CAS  Google Scholar 

  • Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475. doi:10.1016/j.agee.2010.09.003

    CAS  Google Scholar 

  • Zhang W, Yu Y, Huang Y, Li T, Wang P (2011) Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050. Glob Chang Biol 17:3511–3523. doi:10.1111/j.1365-2486.2011.02495.x

    Google Scholar 

  • Zhang A, Liu Y, Pan G, Hussain Q, Li L, Zheng J, Zhang X (2012) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351:263–275. doi:10.1007/s11104-011-0957-x

    CAS  Google Scholar 

  • Zhang HL, Bai XL, Xue JF, Chen ZD, Tang HM, Chen F (2013) Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China. PLoS One 8:e65277. doi:10.1371/journal.pone.0065277

    CAS  Google Scholar 

  • Zheng X, Wang M, Wang Y et al (2000) Mitigation options for methane, nitrous oxide and nitric oxide emissions from agricultural ecosystems. Adv Atmos Sci 17:83–92. doi:10.1007/s00376-000-0045-2

    Google Scholar 

  • Zou J, Huang Y, Jiang J, Zheng X, Sass RL (2005) A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Glob Biogeochem Cycles 19:GB2021. doi:10.1029/2004GB002401

    Google Scholar 

  • Zou J, Huang Y, Qin Y, Liu S, Shen Q, Pan G, Lu Y, Liu Q (2009) Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Glob Chang Biol 15:229–242. doi:10.1111/j.1365-2486.2008.01775.x

    Google Scholar 

  • Zschornack T, Bayer C, Zanatta JA, Vieira FCB, Anghinoni I (2011) Mitigation of methane and nitrous oxide emissions from flood-irrigated rice by no incorporation of winter crop residues into the soil. Rev Bras Ciênc Solo 35:623–634. doi:10.1590/S0100-06832011000200031

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Project No. 31371571); the Open Project Program of Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture (Project No. 201301); the National Science & Technology Pillar Program (2013BAD20B06); and the Fundamental Research Funds for the Central Universities (Project No. 2013PY109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixiao Nie.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Peng, S., Fahad, S. et al. Rice management interventions to mitigate greenhouse gas emissions: a review. Environ Sci Pollut Res 22, 3342–3360 (2015). https://doi.org/10.1007/s11356-014-3760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3760-4

Keywords

Navigation