Skip to main content

Graphene Functionalizations on Copper by Spectroscopic Techniques

  • Chapter
  • First Online:
Graphene Functionalization Strategies

Part of the book series: Carbon Nanostructures ((CARBON))

  • 674 Accesses

Abstract

Graphene is a two-dimensional allotrope of the carbon element, which is one of the most powerful materials of the 21st century. In order to facilitate the processing of the graphene, solvent-supported methods such as rotation coating, layer by layer assembly, and filtration are used. Single layer graphene prevents agglomeration of the material while reducing reactions occur. According to the studies in the literature, the chemical functionalization of graphene is performed by covalent and non-covalent modification techniques on substrate like copper. Besides, graphene can be used in many material production areas, such as polymer nanocomposites, drug delivery system, supercapacitor devices, solar cells, biosensors, and memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrahamson, J.T., Sempere, B., Walsh, M.P., Forman, J.M., Şen, F., Şen, S., Mahajan, S.G., Paulus, G.L.C., Wang, Q.H., Choi, W., Strano, M.S.: Excess thermopower and the theory of thermopower waves. ACS Nano 7, 6533–6544 (2013). https://doi.org/10.1021/nn402411k

    Article  CAS  Google Scholar 

  2. Aday, B., Pamuk, H., Kaya, M., Sen, F.: Graphene Oxide as highly effective and readily recyclable catalyst using for the One-Pot synthesis of 1,8-Dioxoacridine derivatives. J. Nanosci. Nanotechnol. 16, 6498–6504 (2016). https://doi.org/10.1166/jnn.2016.12432

    Article  CAS  Google Scholar 

  3. Aday, B., Yıldız, Y., Ulus, R., Eris, S., Sen, F., Kaya, M.: One-Pot, efficient and green synthesis of Acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced Graphene Oxide. New J. Chem. 40, 748–754 (2016). https://doi.org/10.1039/C5NJ02098K

    Article  CAS  Google Scholar 

  4. Akocak, S., Şen, B., Lolak, N., Şavk, A., Koca, M., Kuzu, S., Şen, F.: One-Pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored Graphene Oxide as highly efficient and recyclable catalyst. Nano-Struct. Nano-Objects 11, 25–31 (2017). https://doi.org/10.1016/j.nanoso.2017.06.002

    Article  CAS  Google Scholar 

  5. Al-Mashat, L., Shin, K., Kalantar-zadeh, K., Plessis, J.D., Han, S.H., Kojima, R.W., Kaner, R.B., Li, D., Gou, X., Ippolito, S.J., Wlodarski, W.: Graphene/Polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 114, 16168–16173 (2010). https://doi.org/10.1021/jp103134u

    Article  CAS  Google Scholar 

  6. Ambrosi, A., Pumera, M.: The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale 6, 472–476 (2014). https://doi.org/10.1039/C3NR05230C

    Article  CAS  Google Scholar 

  7. Ayranci, R., Baskaya, G., Guzel, M., Bozkurt, S., Ak, M., Savk, A., Sen, F.: Activated Carbon furnished monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions. Nano-Struct. Nano-Objects 11, 13–19 (2017). https://doi.org/10.1016/j.nanoso.2017.05.008

    Article  CAS  Google Scholar 

  8. Ayranci, R., Başkaya, G., Güzel, M., Bozkurt, S., Şen, F., Ak, M.: Carbon based nanomaterials for high performance optoelectrochemical systems. ChemistrySelect 2, 1548–1555 (2017). https://doi.org/10.1002/slct.201601632

    Article  CAS  Google Scholar 

  9. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, YIl, Kim, Y.-J., Kim, K.S., Özyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/nnano.2010.132

    Article  CAS  Google Scholar 

  10. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872

    Article  CAS  Google Scholar 

  11. Baskaya, G., Esirden, İ., Erken, E., Sen, F., Kaya, M.: Synthesis of 5-Substituted-1H-Tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. J. Nanosci. Nanotechnol. 17, 1992–1999 (2017). https://doi.org/10.1166/jnn.2017.12867

    Article  CAS  Google Scholar 

  12. Başkaya, G., Yıldız, Y., Savk, A., Okyay, T.O., Eriş, S., Sert, H., Şen, F.: Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens. Bioelectron. 91, 728–733 (2017). https://doi.org/10.1016/j.bios.2017.01.045

    Article  CAS  Google Scholar 

  13. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science (80-) 312, 1191–1196 (2006). https://doi.org/10.1126/science.1125925

    Article  CAS  Google Scholar 

  14. Bourlinos, A.B., Gournis, D., Petridis, D., Szabó, T., Szeri, A., Dékány, I.: Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003). https://doi.org/10.1021/la026525h

    Article  CAS  Google Scholar 

  15. Bozkurt, S., Tosun, B., Sen, B., Akocak, S., Savk, A., Ebeoğlugil, M.F., Sen, F.: A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal. Chim. Acta 989, 88–94 (2017). https://doi.org/10.1016/j.aca.2017.07.051

    Article  CAS  Google Scholar 

  16. Campion, A., Kambhampati, P.: Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–243 (1998). https://doi.org/10.1039/a827241z

    Article  CAS  Google Scholar 

  17. Çelik, B., Başkaya, G., Sert, H., Karatepe, Ö., Erken, E., Şen, F.: Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. Int. J. Hydrogen Energy 41, 5661–5669 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.061

    Article  CAS  Google Scholar 

  18. Çelik, B., Erken, E., Eriş, S., Yıldız, Y., Şahin, B., Pamuk, H., Sen, F.: Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB. Catal. Sci. Technol. 6, 1685–1692 (2016). https://doi.org/10.1039/C5CY01371B

    Article  CAS  Google Scholar 

  19. Çelik, B., Kuzu, S., Erken, E., Sert, H., Koşkun, Y., Şen, F.: Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 Alcohol Oxidation. Int. J. Hydrogen Energy 41, 3093–3101 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.138

    Article  CAS  Google Scholar 

  20. Çelik, B., Yildiz, Y., Sert, H., Erken, E., Koşkun, Y., Şen, F.: Monodispersed Palladium-Cobalt alloy nanoparticles assembled on Poly(N-vinyl-pyrrolidone) (PVP) as a highly effective catalyst for Dimethylamine Borane (DMAB). RSC Adv 6, 24097–24102 (2016). https://doi.org/10.1039/c6ra00536e

    Article  Google Scholar 

  21. Chen, D., Tang, L., Li, J.: Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010). https://doi.org/10.1039/b923596e

    Article  CAS  Google Scholar 

  22. Daşdelen, Z., Yıldız, Y., Eriş, S., Şen, F.: Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP Hybride material for methanol oxidation reaction. Appl. Catal. B Environ. 219, 511–516 (2017). https://doi.org/10.1016/j.apcatb.2017.08.014

    Article  CAS  Google Scholar 

  23. Demir, E., Savk, A., Sen, B., Sen, F.: A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Struct. Nano-Objects 12, 41–45 (2017). https://doi.org/10.1016/j.nanoso.2017.08.018

    Article  CAS  Google Scholar 

  24. Demir, E., Sen, B., Sen, F.: Highly efficient Pt nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells. Nano-Struct. Nano-Objects 11, 39–45 (2017). https://doi.org/10.1016/j.nanoso.2017.06.003

    Article  CAS  Google Scholar 

  25. Demirci, T., Çelik, B., Yildiz, Y., Eriş, S., Arslan, M., Sen, F., Kilbas, B.: One-pot synthesis of hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst. RSC Adv 6, 76948–76956 (2016). https://doi.org/10.1039/c6ra13142e

    Article  CAS  Google Scholar 

  26. Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007). https://doi.org/10.1038/nature06016

    Article  CAS  Google Scholar 

  27. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010). https://doi.org/10.1039/b917103g

    Article  CAS  Google Scholar 

  28. Eda, G., Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9, 814–818 (2009). https://doi.org/10.1021/nl8035367

    Article  CAS  Google Scholar 

  29. Eris, S., Daşdelen, Z., Sen, F.: Investigation of electrocatalytic activity and stability of Pt@F-VC catalyst prepared by in-situ synthesis for methanol electrooxidation. Int. J. Hydrogen Energy 43, 385–390 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.063

    Article  CAS  Google Scholar 

  30. Eris, S., Daşdelen, Z., Sen, F.: Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J. Colloid Interface Sci. 513, 767–773 (2018). https://doi.org/10.1016/j.jcis.2017.11.085

    Article  CAS  Google Scholar 

  31. Eris, S., Daşdelen, Z., Yıldız, Y., Sen, F.: Nanostructured Polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for methanol oxidation. Int. J. Hydrogen Energy 43, 1337–1343 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.051

    Article  CAS  Google Scholar 

  32. Erken, E., Esirden, İ., Kaya, M., Sen, F.: A rapid and novel method for the synthesis of 5-Substituted 1H-Tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv. 5, 68558–68564 (2015). https://doi.org/10.1039/C5RA11426H

    Article  CAS  Google Scholar 

  33. Erken, E., Pamuk, H., Karatepe, Ö., Başkaya, G., Sert, H., Kalfa, O.M., Şen, F.: New Pt(0) nanoparticles as highly active and reusable catalysts in the C1–C3 Alcohol Oxidation and the room temperature dehydrocoupling of Dimethylamine-Borane (DMAB). J. Clust. Sci. 27, 9–23 (2016). https://doi.org/10.1007/s10876-015-0892-8

    Article  CAS  Google Scholar 

  34. Erken, E., Yıldız, Y., Kilbaş, B., Şen, F.: Synthesis and characterization of nearly monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol oxidation and dehydrogenation of Dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16, 5944–5950 (2016). https://doi.org/10.1166/jnn.2016.11683

    Article  CAS  Google Scholar 

  35. Ertan, S., Şen, F., Şen, S., Gökağaç, G.: Platinum nanocatalysts prepared with different surfactants for C1–C3 Alcohol oxidations and their surface morphologies by AFM. J. Nanoparticle Res. 14, 922–934 (2012). https://doi.org/10.1007/s11051-012-0922-5

    Article  CAS  Google Scholar 

  36. Esirden, İ., Erken, E., Kaya, M., Sen, F.: Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-Substituted 1H-Tetrazole derivatives. Catal. Sci. Technol. 5, 4452–4457 (2015). https://doi.org/10.1039/C5CY00864F

    Article  CAS  Google Scholar 

  37. Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S.: Single-layer graphene nanosheets with controlled grafting of polymer chains. J. Mater. Chem. 20, 1982–1992 (2010). https://doi.org/10.1039/b919078c

    Article  CAS  Google Scholar 

  38. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401–187404 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  39. Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M.: New Insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009). https://doi.org/10.1038/nchem.281

    Article  CAS  Google Scholar 

  40. Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approach. Chem. Rev. 112, 6156–6214 (2012). https://doi.org/10.1021/cr3000412

    Article  CAS  Google Scholar 

  41. Giraldo, J.P., Landry, M.P., Faltermeier, S.M., McNicholas, T.P., Iverson, N.M., Boghossian, A.A., Reuel, N.F., Hilmer, A.J., Sen, F., Brew, J.A., Strano, M.S.: Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014). https://doi.org/10.1038/nmat3890

    Article  CAS  Google Scholar 

  42. Göksu, H., Çelik, B., Yıldız, Y., Şen, F., Kılbaş, B.: Superior monodisperse CNT-Supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in aqueous medium. ChemistrySelect 1, 2366–2372 (2016). https://doi.org/10.1002/slct.201600509

    Article  CAS  Google Scholar 

  43. Goksu, H., Sert, H., Kilbas, B., Sen, F.: Recent advances in the reduction of nitro compounds by heterogenous catalysts. Curr. Org. Chem. 21, 794–820 (2017). https://doi.org/10.2174/1385272820666160525123907

    Article  CAS  Google Scholar 

  44. Goksu, H., Yıldız, Y., Çelik, B., Yazici, M., Kilbas, B., Sen, F.: Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of Dimethylamine-Borane in the presence of a reduced graphene oxide furnished Platinum nanocatalyst. Catal. Sci. Technol. 6, 2318–2324 (2016). https://doi.org/10.1039/C5CY01462J

    Article  CAS  Google Scholar 

  45. Göksu, H., Yıldız, Y., Çelik, B., Yazıcı, M., Kılbaş, B., Şen, F.: Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of Aryl Halides via Ammonia Borane. ChemistrySelect 1, 953–958 (2016). https://doi.org/10.1002/slct.201600207

    Article  CAS  Google Scholar 

  46. Goksu, H., Zengin, N., Karaosman, A., Sen, F.: Highly active and reusable Pd/AlO(OH) nanoparticles for the Suzuki Cross-coupling reaction. Curr. Organocatal. 5, 34–41 (2018). https://doi.org/10.2174/2213337205666180614114550

    Article  CAS  Google Scholar 

  47. Gulçin, İ., Taslimi, P., Aygün, A., Sadeghian, N., Bastem, E., Kufrevioglu, O.I., Turkan, F., Şen, F.: Antidiabetic and antiparasitic potentials: inhibition effects of some natural antioxidant Compounds on Α-Glycosidase, Α-Amylase and Human Glutathione S-Transferase enzymes. Int. J. Biol. Macromol. 119, 741–746 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.001

    Article  CAS  Google Scholar 

  48. Günbatar, S., Aygun, A., Karataş, Y., Gülcan, M., Şen, F.: Carbon-nanotube-based Rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of Dimethylamineborane at room temperature. J. Colloid Interface Sci. 530, 321–327 (2018). https://doi.org/10.1016/j.jcis.2018.06.100

    Article  CAS  Google Scholar 

  49. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., Eklund, P.C.: Raman scattering from high-frequency phonons in supported N-Graphene layer films. Nano Lett. 6, 2667–2673 (2006). https://doi.org/10.1021/nl061420a

    Article  CAS  Google Scholar 

  50. Hallam, T., Berner, N.C., Yim, C., Duesberg, G.S.: Strain, bubbles, dirt, and folds: a study of graphene polymer-assisted transfer. Adv. Mater. Interfaces 1, 1400115–1400122 (2014). https://doi.org/10.1002/admi.201400115

    Article  CAS  Google Scholar 

  51. Hamilton, C.E., Lomeda, J.R., Sun, Z., Tour, J.M., Barron, A.R.: High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 9, 3460–3462 (2009). https://doi.org/10.1021/nl9016623

    Article  CAS  Google Scholar 

  52. Hao, R., Qian, W., Zhang, L., Hou, Y.: Aqueous dispersions of TCNQ-Anion-stabilized graphene sheets. Chem. Commun. pp. 6576–6578 (2008). https://doi.org/10.1039/b816971c

  53. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol 3, 563–568 (2008). https://doi.org/10.1038/nnano.2008.215

    Article  CAS  Google Scholar 

  54. Huang, S., Ling, X., Liang, L., Song, Y., Fang, W., Zhang, J., Kong, J., Meunier, V., Dresselhaus, M.S.: Molecular selectivity of graphene-enhanced raman scattering. Nano Lett. 15, 2892–2901 (2015). https://doi.org/10.1021/nl5045988

    Article  CAS  Google Scholar 

  55. Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  56. Iverson, N.M., Barone, P.W., Shandell, M., Trudel, L.J., Sen, S., Sen, F., Ivanov, V., Atolia, E., Farias, E., McNicholas, T.P., Reuel, N., Parry, N.M.A., Wogan, G.N., Strano, M.S.: In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8, 873–880 (2013). https://doi.org/10.1038/nnano.2013.222

    Article  CAS  Google Scholar 

  57. Karatepe, Ö., Yıldız, Y., Pamuk, H., Eris, S., Dasdelen, Z., Sen, F.: Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy–PANI nanocomposites as a novel catalyst for the electro-oxidation of methanol. RSC Adv. 6, 50851–50857 (2016). https://doi.org/10.1039/C6RA06210E

    Article  CAS  Google Scholar 

  58. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). https://doi.org/10.1038/nature07719

    Article  CAS  Google Scholar 

  59. Koskun, Y., Şavk, A., Şen, B., Şen, F.: Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta. 1010, 37–43 (2018). https://doi.org/10.1016/j.aca.2018.01.035

    Article  CAS  Google Scholar 

  60. Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009). https://doi.org/10.1038/nature07872

    Article  CAS  Google Scholar 

  61. Kovaříček, P., Bastl, Z., Valeš, V., Kalbac, M.: Covalent reactions on chemical vapor deposition grown graphene studied by surface-enhanced raman spectroscopy. Chem - A Eur J 22, 5404–5408 (2016). https://doi.org/10.1002/chem.201504689

    Article  CAS  Google Scholar 

  62. Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: C2F, BN, and C nanoshell elasticity from AB initio computations. Phys. Rev. B 64, 235406–235416 (2001). https://doi.org/10.1103/PhysRevB.64.235406

    Article  CAS  Google Scholar 

  63. Kuila, T., Bose, S., Hong, C.E., Uddin, M.E., Khanra, P., Kim, N.H., Lee, J.H.: Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon N Y 49, 1033–1037 (2011). https://doi.org/10.1016/j.carbon.2010.10.031

    Article  CAS  Google Scholar 

  64. Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H., Lee, J.H.: chemical functionalization of graphene and its applications. Prog. Mater Sci. 57, 1061–1105 (2012). https://doi.org/10.1016/j.pmatsci.2012.03.002

    Article  CAS  Google Scholar 

  65. Larisika, M., Kotlowski, C., Steininger, C., Mastrogiacomo, R., Pelosi, P., Schütz, S., Peteu, S.F., Kleber, C., Reiner-Rozman, C., Nowak, C., Knoll, W.: Electronic olfactory sensor based on A. mellifera odorant-binding protein 14 on a reduced graphene oxide field-effect transistor. Angew Chemie. Int. Ed. 54, 13245–13248 (2015). https://doi.org/10.1002/anie.201505712

    Article  CAS  Google Scholar 

  66. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (80-) 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  CAS  Google Scholar 

  67. Lee, D.Y., Khatun, Z., Lee, J.-H., Lee, Y., In, I.: Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromol 12, 336–341 (2011). https://doi.org/10.1021/bm101031a

    Article  CAS  Google Scholar 

  68. Lee, W.H., Park, J., Kim, Y., Kim, K.S., Hong, B.H., Cho, K.: Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv. Mater. 23, 3460–3464 (2011). https://doi.org/10.1002/adma.201101340

    Article  CAS  Google Scholar 

  69. Lee, W.H., Park, J., Kim, Y., Kim, K.S., Hong, B.H., Cho, K.: Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv. Mater. 23, 3460–3464 (2011). https://doi.org/10.1002/adma.201101340

    Article  CAS  Google Scholar 

  70. Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008). https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  71. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (80-) 324, 1312–1314 (2009). https://doi.org/10.1126/science.1171245

    Article  CAS  Google Scholar 

  72. Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., Chen, J.: One-step Ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008). https://doi.org/10.1002/adfm.200700797

    Article  CAS  Google Scholar 

  73. Loh, K.P., Bao, Q., Ang, P.K., Yang, J.: The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010). https://doi.org/10.1039/b920539j

    Article  CAS  Google Scholar 

  74. Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Zhiming, W., McGovern, I.T., Duesberg, G.S., Coleman, J.N.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009). https://doi.org/10.1021/ja807449u

    Article  CAS  Google Scholar 

  75. Lotya, M., King, P.J., Khan, U., De, S., Coleman, J.N.: High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162 (2010). https://doi.org/10.1021/nn1005304

    Article  CAS  Google Scholar 

  76. Lupina, G., Kitzmann, J., Costina, I., Lukosius, M., Wenger, C., Wolff, A., Vaziri, S., Östling, M., Pasternak, I., Krajewska, A., Strupinski, W., Kataria, S., Gahoi, A., Lemme, M.C., Ruhl, G., Zoth, G., Luxenhofer, O., Mehr, W.: Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9, 4776–4785 (2015). https://doi.org/10.1021/acsnano.5b01261

    Article  CAS  Google Scholar 

  77. Matsuo, Y., Sakai, Y., Fukutsuka, T., Sugie, Y.: Preparation of pillared carbons by pyrolysis of silylated graphite oxide. Chem. Lett. 36, 1050–1051 (2007). https://doi.org/10.1246/cl.2007.1050

    Article  CAS  Google Scholar 

  78. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007). https://doi.org/10.1038/nature05545

    Article  CAS  Google Scholar 

  79. Min, S.K., Kim, W.Y., Cho, Y., Kim, K.S.: Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 6, 162–165 (2011). https://doi.org/10.1038/nnano.2010.283

    Article  CAS  Google Scholar 

  80. Muñoz, R., Gómez-Aleixandre, C.: Review of CVD synthesis of graphene. Chem. Vap. Depos. 19, 297–322 (2013). https://doi.org/10.1002/cvde.201300051

    Article  CAS  Google Scholar 

  81. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science (80-) 320, 1308–1308 (2008). https://doi.org/10.1126/science.1156965

    Article  CAS  Google Scholar 

  82. Nemes-Incze, P., Osváth, Z., Kamarás, K., Biró, L.P.: Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscop. Carbon N Y 46, 1435–1442 (2008). https://doi.org/10.1016/j.carbon.2008.06.022

    Article  CAS  Google Scholar 

  83. Nethravathi, C., Rajamathi, J.T., Ravishankar, N., Shivakumara, C., Rajamathi, M.: Graphite oxide-intercalated anionic clay and its decomposition to graphene-inorganic material nanocomposites. Langmuir 24, 8240–8244 (2008). https://doi.org/10.1021/la8000027

    Article  CAS  Google Scholar 

  84. Novoselov, K.S.: Electric field effect in atomically thin carbon films. Science (80-) 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  85. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005). https://doi.org/10.1038/nature04233

    Article  CAS  Google Scholar 

  86. Novoselov, K.S., McCann, E., Morozov, S.V., Fal’ko, V.I., Katsnelson, M.I., Zeitler, U., Jiang, D., Schedin, F., Geim, A.K.: Unconventional quantum Hall effect and Berry’s Phase of 2π in Bilayer Graphene. Nat. Phys. 2, 177–180 (2006). https://doi.org/10.1038/nphys245

    Article  Google Scholar 

  87. Ozturk, Z., Sen, F., Sen, S., Gokagac, G.: The preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. J. Mater. Sci. 47, 8134–8144 (2012). https://doi.org/10.1007/s10853-012-6709-3

    Article  CAS  Google Scholar 

  88. Pamuk, H., Aday, B., Şen, F., Kaya, M.: Pt NPs@GO as a highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Adv. 5, 49295–49300 (2015). https://doi.org/10.1039/C5RA06441D

    Article  CAS  Google Scholar 

  89. Parades, J.I., Villar-Rodil, S., Martínez-Alonso, A., Tascón, J.M.D.: Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008). https://doi.org/10.1021/la801744a

    Article  CAS  Google Scholar 

  90. Park, J., Jo, S.B., Yu, Y.-J., Kim, Y., Yang, J.W., Lee, W.H., Kim, H.H., Hong, B.H., Kim, P., Cho, K., Kim, K.S.: Single-gate bandgap opening of bilayer graphene by dual molecular doping. Adv. Mater. 24, 407–411 (2012). https://doi.org/10.1002/adma.201103411

    Article  CAS  Google Scholar 

  91. Park, J., Lee, W.H., Huh, S., Sim, S.H., Bin, Kim S., Cho, K., Hong, B.H., Kim, K.S.: Work-function engineering of graphene electrodes by self-assembled monolayers for high-performance organic field-effect transistors. J. Phys. Chem. Lett. 2, 841–845 (2011). https://doi.org/10.1021/jz200265w

    Article  CAS  Google Scholar 

  92. Park, M.J., Lee, J.K., Lee, B.S., Lee, Y.W., Choi, I.S., Lee, S.G.: Covalent modification of multiwalled carbon nanotubes with imidazolium-based ionic liquids: Effect of anions on solubility. Chem. Mater. 18, 1546–1551 (2006). https://doi.org/10.1021/cm0511421

    Article  CAS  Google Scholar 

  93. Park, S., An, J., Piner, R.D., Jung, I., Yang, D., Velamakanni, A., Nguyen, S.T., Ruoff, R.S.: Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008). https://doi.org/10.1021/cm801932u

    Article  CAS  Google Scholar 

  94. Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009). https://doi.org/10.1038/nnano.2009.58

    Article  CAS  Google Scholar 

  95. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Jing, K.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009). https://doi.org/10.1021/nl801827v

    Article  CAS  Google Scholar 

  96. Şahin, B., Aygün, A., Gündüz, H., Şahin, K., Demir, E., Akocak, S., Şen, F.: Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf. B Biointerfaces 163, 119–124 (2018). https://doi.org/10.1016/j.colsurfb.2017.12.042

    Article  CAS  Google Scholar 

  97. Şahin, B., Demir, E., Aygün, A., Gündüz, H., Şen, F.: Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. J. Biotechnol. 260, 79–83 (2017). https://doi.org/10.1016/j.jbiotec.2017.09.012

    Article  CAS  Google Scholar 

  98. Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). https://doi.org/10.1038/nmat1967

    Article  CAS  Google Scholar 

  99. Şen, B., Akdere, E.H., Şavk, A., Gültekin, E., Paralı, Ö., Göksu, H., Şen, F.: A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of Aryl Aldehydes together with malononitrile. Appl. Catal. B Environ. 225, 148–153 (2018). https://doi.org/10.1016/j.apcatb.2017.11.067

    Article  CAS  Google Scholar 

  100. Şen, B., Aygün, A., Okyay, T.O., Şavk, A., Kartop, R., Şen, F.: Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of Dimethylamine-borane. Int. J. Hydrogen Energy 43, 20176–20182 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.175

    Article  CAS  Google Scholar 

  101. Şen, B., Demirkan, B., Levent, M., Şavk, A., Şen, F.: Silica-based monodisperse PdCo nanohybrids as highly efficient and stable nanocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 20234–20242 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.080

    Article  CAS  Google Scholar 

  102. Şen, B., Demirkan, B., Şavk, A., Karahan Gülbay, S., Şen, F.: Trimetallic PdRuNi nanocomposites decorated on graphene oxide: a superior catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 17984–17992 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.122

    Article  CAS  Google Scholar 

  103. Sen, B., Demirkan, B., Şimşek, B., Savk, A., Sen, F.: Monodisperse Palladium nanocatalysts for dehydrocoupling of Dimethylamineborane. Nano-Struct. Nano-Objects 16, 209–214 (2018). https://doi.org/10.1016/j.nanoso.2018.07.008

    Article  CAS  Google Scholar 

  104. Sen, B., Kuyuldar, E., Demirkan, B., Onal Okyay, T., Şavk, A., Sen, F.: Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of Dimethylamine Borane. J. Colloid Interf. Sci. 526, 480–486 (2018). https://doi.org/10.1016/j.jcis.2018.05.021

    Article  CAS  Google Scholar 

  105. Şen, B., Kuzu, S., Demir, E., Akocak, SüleymanŞSen F.: Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of Dimethylamine–borane. Int. J. Hydrogen Energy 42, 23292–23298 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.032

    Article  CAS  Google Scholar 

  106. Şen, B., Kuzu, S., Demir, E., Akocak, S., Şen, F.: Polymer-graphene hybride decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of Dimethylamine–borane at room temperature. Int. J. Hydrogen Energy 42, 23284–23291 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.112

    Article  CAS  Google Scholar 

  107. Sen, B., Kuzu, S., Demir, E., Onal Okyay, T., Sen, F.: Hydrogen liberation from the dehydrocoupling of dimethylamine–borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. Int. J. Hydrogen Energy 42, 23299–23306 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.213

    Article  CAS  Google Scholar 

  108. Şen, B., Kuzu, S., Demir, E., Yıldırır, E., Şen, F.: Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium-nickel alloy nanoparticles assembled on PEDOT. Int. J. Hydrogen Energy 42, 23307–23314 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.115

    Article  CAS  Google Scholar 

  109. Şen, B., Lolak, N., Paralı, Ö., Koca, M., Şavk, A., Akocak, S., Şen, F.: Bimetallic PdRu/graphene oxide based catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Struct. Nano-Objects 12, 33–40 (2017). https://doi.org/10.1016/j.nanoso.2017.08.013

    Article  CAS  Google Scholar 

  110. Sen, B., Şavk, A., Kuyuldar, E., Karahan Gülbay, S., Sen, F.: Hydrogen liberation from the hydrolytic dehydrogenation of hydrazine borane in acidic media. Int. J. Hydrogen Energy 43, 17978–17983 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.225

    Article  CAS  Google Scholar 

  111. Sen, B., Şavk, A., Sen, F.: Highly efficient monodisperse pt nanoparticles confined in the carbon black hybrid material for hydrogen liberation. J. Colloid Interf. Sci. 520, 112–118 (2018). https://doi.org/10.1016/j.jcis.2018.03.004

    Article  CAS  Google Scholar 

  112. Sen, F., Boghossian, A.A., Sen, S., Ulissi, Z.W., Zhang, J., Strano, M.S.: Observation of oscillatory surface reactions of Riboflavin, Trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy. ACS Nano 6, 10632–10645 (2012). https://doi.org/10.1021/nn303716n

    Article  CAS  Google Scholar 

  113. Şen, F., Gökaǧaç, G.: Different sized platinum nanoparticles supported on carbon: An XPS study on these methanol oxidation catalysts. J. Phys. Chem. C 111, 5715–5720 (2007). https://doi.org/10.1021/jp068381b

    Article  CAS  Google Scholar 

  114. Şen, F., Gökaǧaç, G.: Improving catalytic efficiency in the methanol oxidation reaction by inserting Ru in face-centered cubic Pt nanoparticles prepared by a new surfactant, Tert-octanethiol. Energy Fuels 22, 1858–1864 (2008). https://doi.org/10.1021/ef700575t

    Article  CAS  Google Scholar 

  115. Şen, F., Gökaǧaç, G.: Pt nanoparticles synthesized with new surfactants: Improvement in C1-C3 alcohol oxidation catalytic activity. J. Appl. Electrochem. 44, 199–207 (2014). https://doi.org/10.1007/s10800-013-0631-5

    Article  CAS  Google Scholar 

  116. Şen, F., Gökağaç, G., Şen, S.: High performance Pt Nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions. J Nanoparticle Res. 15, 1979–1988 (2013). https://doi.org/10.1007/s11051-013-1979-5

    Article  CAS  Google Scholar 

  117. Sen, F., Karatas, Y., Gulcan, M., Zahmakiran, M.: Amylamine stabilized Platinum(0) nanoparticles: Active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Adv. 4, 1526–1531 (2014). https://doi.org/10.1039/c3ra43701a

    Article  CAS  Google Scholar 

  118. Şen, F., Şen, S., Gökaǧaç, G.: Efficiency enhancement of methanol/ethanol oxidation reactions on Pt Nanoparticles prepared using a new surfactant, 1,1-Dimethyl Heptanethiol. Phys. Chem. Chem. Phys. 13, 1676–1684 (2011). https://doi.org/10.1039/c0cp01212b

    Article  CAS  Google Scholar 

  119. Sen, S., Sen, F., Boghossian, A.A., Zhang, J., Strano, M.S.: Effect of reductive dithiothreitol and Trolox on nitric oxide quenching of single-walled carbon nanotubes. J. Phys. Chem. C 117, 593–602 (2013). https://doi.org/10.1021/jp307175f

    Article  CAS  Google Scholar 

  120. Sert, H., Yıldız, Y., Okyay, T.O., Gezer, B., Dasdelen, Z., Sen, B., Sen, F.: Monodisperse Mw-Pt NPs@VC as highly efficient and reusable adsorbents for methylene blue removal. J. Clust. Sci. 27, 1953–1962 (2016). https://doi.org/10.1007/s10876-016-1054-3

    Article  CAS  Google Scholar 

  121. Sert, H., Yıldız, Y., Onal Okyay, T., Sen, B., Gezer, B., Bozkurt, S., Ba, G., Sen, F.: Activated carbon furnished monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions. J. Nanosci. Nanotechnol. 17, 1–6 (2017). https://doi.org/10.1166/jnn.2017.13776

    Article  CAS  Google Scholar 

  122. Shao, Y., Wang, J., Engelhard, M., Wang, C., Lin, Y.: Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 20, 743–748 (2010). https://doi.org/10.1039/B917975E

    Article  CAS  Google Scholar 

  123. Shukla, S., Saxena, S.: Spectroscopic investigation of confinement effects on optical properties of graphene oxide. Appl. Phys. Lett. 98, 073104–073106 (2011). https://doi.org/10.1063/1.3555438

    Article  CAS  Google Scholar 

  124. Si, Y., Samulski, E.T.: Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008). https://doi.org/10.1021/nl080604h

    Article  CAS  Google Scholar 

  125. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006). https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  126. Stoller, M.D., Park, S., Yanwu, Z., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008). https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

  127. Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., Tour, J.M.: Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010). https://doi.org/10.1038/nature09579

    Article  CAS  Google Scholar 

  128. Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., Dékány, I.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006). https://doi.org/10.1021/cm060258+

  129. Szabó, T., Szeri, A., Dékány, I.: Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon N Y 43, 87–94 (2005). https://doi.org/10.1016/j.carbon.2004.08.025

    Article  CAS  Google Scholar 

  130. Tasic, A., Sredovic-Ignjatovic, I., Ignjatovic, L., Andjelkovic, I., Antic, M., Rajakovic, L.: Investigation of different extraction procedures for the determination of major and trace elements in coal by ICP-AES and Ion chromatography. J. Serbian Chem. Soc. 81, 403–417 (2016). https://doi.org/10.2298/JSC150429078T

    Article  CAS  Google Scholar 

  131. Tehrani, Z., Burwell, G., Azmi, M.A.M., Castaing, A., Rickman, R., Almarashi, J., Dunstan, P., Beigi, A.M., Doak, S.H., Guy, O.J.: Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker. 2D Mater 1, 025004–23 (2014). https://doi.org/10.1088/2053-1583/1/2/025004

    Article  Google Scholar 

  132. Ulissi, Z.W., Sen, F., Gong, X., Sen, S., Iverson, N., Boghossian, A.A., Godoy, L.C., Wogan, G.N., Mukhopadhyay, D., Strano, M.S.: spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors. Nano Lett. 14, 4887–4894 (2014). https://doi.org/10.1021/nl502338y

    Article  CAS  Google Scholar 

  133. Ulus, R., Yıldız, Y., Eriş, S., Aday, B., Şen, F., Kaya, M.: Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. ChemistrySelect 1, 3861–3865 (2016). https://doi.org/10.1002/slct.201600719

    Article  CAS  Google Scholar 

  134. Van Noorden, R.: Chemistry: The trials of new carbon. Nature 469, 14–16 (2011). https://doi.org/10.1038/469014a

    Article  CAS  Google Scholar 

  135. Varghese, S.S., Lonkar, S., Singh, K.K., Swaminathan, S., Abdala, A.: Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 218, 160–183 (2015). https://doi.org/10.1016/j.snb.2015.04.062

    Article  CAS  Google Scholar 

  136. Wang, Q.H., Hersam, M.C.: Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat. Chem. 1, 206–211 (2009). https://doi.org/10.1038/nchem.212

    Article  CAS  Google Scholar 

  137. Wang, Y., Li, Z., Wang, J., Li, J., Lin, Y.: Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 29, 205–212 (2011). https://doi.org/10.1016/j.tibtech.2011.01.008

    Article  CAS  Google Scholar 

  138. Wang, Y., Ni, Z., Yu, T., Shen, Z.X., Wang, H., Wu, Y., Chen, W., Shen, W.A.T.: Raman studies of monolayer graphene: The substrate effect. J. Phys. Chem. C 112, 10637–10640 (2008). https://doi.org/10.1021/jp8008404

    Article  CAS  Google Scholar 

  139. Williams, G., Seger, B., Kamat, P.V.: TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008). https://doi.org/10.1021/nn800251f

    Article  CAS  Google Scholar 

  140. Yi, J.W., Park, J., Kim, K.S., Kim, B.H.: PH-responsive self-duplex of (Py)A-substituted oligodeoxyadenylate in graphene oxide solution as a molecular switch. Org. Biomol. Chem. 9, 7434–7438 (2011). https://doi.org/10.1039/c1ob06037f

    Article  CAS  Google Scholar 

  141. Yildiz, Y., Okyay, T.O., Sen, B., Gezer, B., Kuzu, S., Savk, A., Demir, E., Dasdelen, Z., Sert, H., Sen, F.: Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect 2, 697–701 (2017). https://doi.org/10.1002/slct.201601608

    Article  CAS  Google Scholar 

  142. Yıldız, Y., Erken, E., Pamuk, H., Sert, H., Şen, F.: Monodisperse Pt nanoparticles assembled on reduced graphene oxide: highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of Dimethylamine-Borane (DMAB). J. Nanosci. Nanotechnol. 16, 5951–5958 (2016). https://doi.org/10.1166/jnn.2016.11710

    Article  CAS  Google Scholar 

  143. Yıldız, Y., Esirden, İ., Erken, E., Demir, E., Kaya, M., Şen, F.: Microwave (Mw)-assisted synthesis of 5-Substituted 1H-Tetrazoles via [3 + 2] cycloaddition catalyzed by Mw-Pd/Co nanoparticles decorated on multi-walled carbon nanotubes. ChemistrySelect 1, 1695–1701 (2016). https://doi.org/10.1002/slct.201600265

    Article  CAS  Google Scholar 

  144. Yıldız, Y., Kuzu, S., Sen, B., Savk, A., Akocak, S., Şen, F.: Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int. J. Hydrogen Energy 42, 13061–13069 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.230

    Article  CAS  Google Scholar 

  145. Yıldız, Y., Pamuk, H., Karatepe, Ö., Dasdelen, Z., Sen, F.: Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation. RSC Adv. 6, 32858–32862 (2016). https://doi.org/10.1039/C6RA00232C

    Article  CAS  Google Scholar 

  146. Zhang, H.B., Zheng, W.G., Yan, Q., Yang, Y., Wang, J.W., Lu, Z.H., Ji, G.Y., Yu, Z.Z.: electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer (Guildf) 51, 1191–1196 (2010). https://doi.org/10.1016/j.polymer.2010.01.027

    Article  CAS  Google Scholar 

  147. Zhang, H., He, S., Chen, C., Zheng, W.Y.Q.: Electrical conductivity of melt compounded functionalized graphene sheets filled polyethyleneterephthalate composites. In: Physics and Applications of Graphene—Experiments. InTech. (2011)

    Google Scholar 

  148. Zhao, Y.-L., Stoddart, J.F.: Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42, 1161–1171 (2009). https://doi.org/10.1021/ar900056z

    Article  CAS  Google Scholar 

  149. Zhu, Y., Stoller, M.D., Cai, W., Velamakanni, A., Piner, R.D., Chen, D., Ruoff, R.S.: Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4, 1227–1233 (2010). https://doi.org/10.1021/nn901689k

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Şen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gülcan, M., Aygün, A., Almousa, F., Burhan, H., Khan, A., Şen, F. (2019). Graphene Functionalizations on Copper by Spectroscopic Techniques. In: Khan, A., Jawaid, M., Neppolian, B., Asiri, A. (eds) Graphene Functionalization Strategies. Carbon Nanostructures. Springer, Singapore. https://doi.org/10.1007/978-981-32-9057-0_13

Download citation

Publish with us

Policies and ethics