Skip to main content

Mitochondria as a Key Player in Aging

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology
  • 518 Accesses

Abstract

Mitochondrion is an organelle found in eukaryotic cells, which plays a major role in generation of ATP for cell and has its own DNA. Mitochondria are a hub for metabolic activities and signalling pathways and are a key player in the process of aging. ATP generation in mitochondria takes place with the help of electron transport chain and oxidative phosphorylation. Leakage of electrons from the respiratory chain complexes can react with oxygen molecules to give rise to reactive oxygen species (ROS). ROS generated by mitochondria at physiological levels is involved in signalling process and at high levels can cause oxidative damage to cellular proteins, lipids and nucleic acids. Damage to mitochondrial and nuclear genome can give rise to mutations, which can cause gradual deterioration of mitochondrial and cellular function or pathological diseases. Indeed, with aging, the mitochondrial function has been found to deteriorate. There are several quality control pathways to maintain mitochondrial function, which have been shown to be affected during the process of aging. Disruption in mitochondrial protein homeostasis induces mitochondrial unfolded protein response (UPRmt), which enhances the protein-folding capacity of mitochondria. Furthermore, severely damaged mitochondria are removed from the cell by the process of mitophagy. Several genes involved in these processes are implicated in altering the lifespan. In this chapter, we give details of these mitochondrial processes and their implication in aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karnkowska A, et al. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26(10):1274–84.

    Article  CAS  PubMed  Google Scholar 

  2. Matthews KR. The developmental cell biology of Trypanosoma brucei. J Cell Sci. 2005;118(Pt 2):283–90.

    Article  CAS  PubMed  Google Scholar 

  3. Hoitzing H, Johnston IG, Jones NS. What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research. BioEssays. 2015;37(6):687–700.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gray MW. Mitochondrial evolution. Cold Spring Harb Perspect Biol. 2012;4(9):a011403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol. 2001;2(6):REVIEWS1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen XJ, Butow RA. The organization and inheritance of the mitochondrial genome. Nat Rev Genet. 2005;6(11):815–25.

    Article  CAS  PubMed  Google Scholar 

  7. Mokranjac D, Neupert W. Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. Biochim Biophys Acta. 2009;1793(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  8. Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem. 2007;76:723–49.

    Article  CAS  PubMed  Google Scholar 

  9. Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123(3):951–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guarente L. Mitochondria--a nexus for aging, calorie restriction, and sirtuins? Cell. 2008;132(2):171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61(5):654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaban Y, Boekema EJ, Dudkina NV. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim Biophys Acta. 2014;1837(4):418–26.

    Article  CAS  PubMed  Google Scholar 

  13. Sazanov LA. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol. 2015;16(6):375–88.

    Article  CAS  PubMed  Google Scholar 

  14. van den Heuvel L, Smeitink J. The oxidative phosphorylation (OXPHOS) system: nuclear genes and human genetic diseases. BioEssays. 2001;23(6):518–25.

    Article  PubMed  Google Scholar 

  15. Cecchini G. Function and structure of complex II of the respiratory chain. Annu Rev Biochem. 2003;72:77–109.

    Article  CAS  PubMed  Google Scholar 

  16. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  17. Marchi S, et al. Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct. 2012;2012:329635.

    Article  PubMed  CAS  Google Scholar 

  18. Harman D. Free radical theory of aging. Mutat Res. 1992;275(3–6):257–66.

    Article  CAS  PubMed  Google Scholar 

  19. Costa V, Quintanilha A, Moradas-Ferreira P. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. IUBMB Life. 2007;59(4–5):293–8.

    Article  CAS  PubMed  Google Scholar 

  20. Cabiscol E, et al. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem. 2000;275(35):27393–8.

    Article  CAS  PubMed  Google Scholar 

  21. Mylonas C, Kouretas D. Lipid peroxidation and tissue damage. In Vivo. 1999;13(3):295–309.

    CAS  PubMed  Google Scholar 

  22. Boiteux S, Radicella JP. Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie. 1999;81(1–2):59–67.

    Article  CAS  PubMed  Google Scholar 

  23. Correia-Melo C, et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016;35(7):724–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paul A, et al. Reduced mitochondrial SOD displays mortality characteristics reminiscent of natural aging. Mech Ageing Dev. 2007;128(11–12):706–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elchuri S, et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene. 2005;24(3):367–80.

    Article  CAS  PubMed  Google Scholar 

  26. Wawryn J, et al. Deficiency in superoxide dismutases shortens life span of yeast cells. Acta Biochim Pol. 1999;46(2):249–53.

    Article  CAS  PubMed  Google Scholar 

  27. Fusco D, et al. Effects of antioxidant supplementation on the aging process. Clin Interv Aging. 2007;2(3):377–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ristow M, Schmeisser K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response. 2014;12(2):288–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194(1):7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Finkel T. Signal transduction by mitochondrial oxidants. J Biol Chem. 2012;287(7):4434–40.

    Article  CAS  PubMed  Google Scholar 

  31. Van Raamsdonk JM, Hekimi S. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet. 2009;5(2):e1000361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Schaar CE, et al. Mitochondrial and cytoplasmic ROS have opposing effects on lifespan. PLoS Genet. 2015;11(2):e1004972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Alam TI, et al. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res. 2003;31(6):1640–5.

    Article  CAS  PubMed  Google Scholar 

  34. Kukat C, et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc Natl Acad Sci U S A. 2015;112(36):11288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Diot A, Morten K, Poulton J. Mitophagy plays a central role in mitochondrial ageing. Mamm Genome. 2016;27(7–8):381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trifunovic A, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–23.

    Article  CAS  PubMed  Google Scholar 

  37. Ferguson LR, Baguley BC. Induction of petite formation in Saccharomyces cerevisiae by experimental antitumour agents. Structure–activity relationships for 9-anilinoacridines. Mutat Res. 1981;90(4):411–23.

    Article  CAS  PubMed  Google Scholar 

  38. Latorre-Pellicer A, et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature. 2016;535(7613):561–5.

    Article  CAS  PubMed  Google Scholar 

  39. Fang EF, et al. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 2016;17(5):308–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jasper H. Sirtuins: longevity focuses on NAD+. Nat Chem Biol. 2013;9(11):666–7.

    Article  CAS  PubMed  Google Scholar 

  42. Ryu D, et al. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci Transl Med. 2016;8(361):361ra139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hershberger KA, Martin AS, Hirschey MD. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol. 2017;13:213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walther DM, et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell. 2015;161(4):919–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gariani K, et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology. 2016;63(4):1190–204.

    Article  CAS  PubMed  Google Scholar 

  46. Jovaisaite V, Mouchiroud L, Auwerx J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol. 2014;217(Pt 1):137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mottis A, Jovaisaite V, Auwerx J. The mitochondrial unfolded protein response in mammalian physiology. Mamm Genome. 2014;25(9–10):424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taylor RC, Dillin A. Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol. 2011;3(5)

    Google Scholar 

  49. Tissenbaum HA. Using C. elegans for aging research. Invertebr Reprod Dev. 2015;59(sup1):59–63.

    Article  PubMed  Google Scholar 

  50. Hamilton B, et al. A systematic RNAi screen for longevity genes in C. elegans. Genes Dev. 2005;19(13):1544–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee SS, et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet. 2003;33(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  52. Houtkooper RH, et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013;497(7450):451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moullan N, et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. 2015;10:1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jensen MB, Jasper H. Mitochondrial proteostasis in the control of aging and longevity. Cell Metab. 2014;20(2):214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pena S, et al. The mitochondrial unfolded protein response protects against anoxia in Caenorhabditis elegans. PLoS One. 2016;11(7):e0159989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Pellegrino MW, Nargund AM, Haynes CM. Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta. 2013;1833(2):410–6.

    Article  CAS  PubMed  Google Scholar 

  57. Tian Y, et al. Mitochondrial stress induces chromatin reorganization to promote longevity and UPR(mt). Cell. 2016;165(5):1197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin YF, et al. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature. 2016;533(7603):416–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao Q, et al. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002;21(17):4411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Munch C, Harper JW. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature. 2016;534(7609):710–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Haynes CM, Ron D. The mitochondrial UPR – protecting organelle protein homeostasis. J Cell Sci. 2010;123(Pt 22):3849–55.

    Article  CAS  PubMed  Google Scholar 

  62. Munkacsy E, et al. DLK-1, SEK-3 and PMK-3 are required for the life extension induced by mitochondrial bioenergetic disruption in C. elegans. PLoS Genet. 2016;12(7):e1006133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Westermann B. Molecular machinery of mitochondrial fusion and fission. J Biol Chem. 2008;283(20):13501–5.

    Article  CAS  PubMed  Google Scholar 

  64. van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. 2013;5(6)

    Google Scholar 

  65. Chauhan A, Vera J, Wolkenhauer O. The systems biology of mitochondrial fission and fusion and implications for disease and aging. Biogerontology. 2014;15(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  66. Regmi SG, Rolland SG, Conradt B. Age-dependent changes in mitochondrial morphology and volume are not predictors of lifespan. Aging (Albany NY). 2014;6:118.

    Article  Google Scholar 

  67. Bernhardt D, et al. Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan. Sci Rep. 2015;5(5):7885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Twig G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McFaline-Figueroa JR, et al. Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell. 2011;10(5):885–95.

    Article  CAS  PubMed  Google Scholar 

  70. Katajisto P, et al.. Stem cellsAsymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science. 2015;348(6232):340–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature. 2015;521(7553):525–8.

    Article  CAS  PubMed  Google Scholar 

  72. Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012;125.(Pt 4:795–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kazlauskaite A, et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 2015;16(8):939–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kondapalli C, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012;2(5):120080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lazarou M, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524(7565):309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Salminen A, et al. Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process. Cell Signal. 2014;26(7):1598–603.

    Article  CAS  PubMed  Google Scholar 

  78. Vafai SB, Mootha VK. Mitochondrial disorders as windows into an ancient organelle. Nature. 2012;491(7424):374–83.

    Article  CAS  PubMed  Google Scholar 

  79. Childers MK, et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med. 2014;6(220):220ra10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Dowling JJ, et al. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain. 2012;135(Pt 4):1115–27.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jain IH, et al. Hypoxia as a therapy for mitochondrial disease. Science. 2016;352(6281):54–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ruiz-Pesini E, et al. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 2007;35(Database issue):D823–8.

    Article  CAS  PubMed  Google Scholar 

  83. Beck JS, Mufson EJ, Counts SE. Evidence for mitochondrial UPR gene activation in familial and sporadic Alzheimer’s disease. Curr Alzheimer Res. 2016;13(6):610–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liao C, et al. Dysregulated mitophagy and mitochondrial organization in optic atrophy due to OPA1 mutations. Neurology. 2017;88(2):131–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Exner N, et al. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012;31(14):3038–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfeffer G, Chinnery PF. Diagnosis and treatment of mitochondrial myopathies. Ann Med. 2013;45(1):4–16.

    Article  CAS  PubMed  Google Scholar 

  87. Singh KK, et al. Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene. 1999;18(48):6641–6.

    Article  CAS  PubMed  Google Scholar 

  88. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lismont C, et al. Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol. 2015;(3):35.

    Google Scholar 

  90. Baumgart M, et al. Longitudinal RNA-Seq analysis of vertebrate aging identifies mitochondrial complex I as a small-molecule-sensitive modifier of lifespan. Cell Syst. 2016;2(2):122–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to apologize to all the colleagues whom we could not cite due to space limitation. Fellowship to RB and financial support from UGC-RNRC, -DRS and DST-FIST, -PURSE to SLS & PCR are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rupa Banerjee or Pramod C. Rath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, R., Rath, P.C. (2020). Mitochondria as a Key Player in Aging. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9005-1_10

Download citation

Publish with us

Policies and ethics