Skip to main content

Deep Tissue Hemodynamic Monitoring Using Diffuse Optical Probes

  • Chapter
  • First Online:
Frontiers in Biophotonics for Translational Medicine

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 3))

Abstract

To see what is happening under our skin using light would have been a dream, as there are many strong absorbers and scatterers that act as hindrances for imaging purpose. Although light penetrates the skin a little and it is possible to image and monitor superficial blood flow using light illumination, it remains as a challenge to probe deep tissue (roughly 0.1 ~ 3.0 cm) using light alone. In this chapter, we describe the challenges and recent achievements of diffuse optical methods to probe deep tissue, running the gamut from diffuse optical spectroscopy (DOS) and diffuse optical tomography (DOT) to recently developed diffuse speckle contrast analysis (DSCA). Diffuse optics has opened up a new possibility of non-invasive diagnosis of lesions in deep tissue. In addition, the usage of light makes diffuse optics-based device compatible with other conventional medical devices such as CT and MRI as well as some implanted device such as pace maker. Moreover, diffuse optics-based device is relatively cost-effective and portable. These merits could limitlessly extend its application to primary care unit, bedside monitoring, and operation theater as an optimal modality for probing hemodynamic parameters in microvasculature in deep tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Bright, Diseases of the Brain and Nervous System (Longman, London, 1831)

    Google Scholar 

  2. M. Cutler, Transillumination of the breast. Surg. Gynecol. Obstet. 48, 721 (1929)

    Google Scholar 

  3. F.F. Jobsis, Noninvasive infrared monitoring of cerebral and myocardial sufficiency and circulatory parameters. Science 198, 1264 (1977)

    Article  Google Scholar 

  4. D.B. Jakubowski, A.E. Cerussi, F.d.r. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B.J. Tromberg, Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study. J. Biomed. Opt. 9, 230–238 (2004)

    Google Scholar 

  5. R. Choe, A. Corlu, K. Lee, T. Durduran, S.D. Konecky, M. Grosicka-Koptyra, S.R. Arridge, B.J. Czerniecki, D.L. Fraker, A. DeMichele, B. Chance, M.A. Rosen, A.G. Yodh, Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI. Med. Phys. 32, 1128–1139 (2005)

    Article  Google Scholar 

  6. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B.J. Tromberg, Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 104, 4014–4019 (2007)

    Article  Google Scholar 

  7. S.D. Jiang, B.W. Pogue, C.M. Carpenter, S.P. Poplack, W.A. Wells, C.A. Kogel, J.A. Forero, L.S. Muffly, G.N. Schwartz, K.D. Paulsen, P.A. Kaufman, Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes. Radiology 252, 551–560 (2009)

    Article  Google Scholar 

  8. Y. Hoshi, Functional near-infrared optical imaging: utility and limitations in human brain mapping. Psychophysiology 40, 511–520 (2003)

    Article  Google Scholar 

  9. D.A. Boas, A.M. Dale, M.A. Franceschini, Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. NeuroImage 23, S275–S288 (2004)

    Article  Google Scholar 

  10. A.T. Eggebrecht, S.L. Ferradal, A. Robichaux-Viehoever, M.S. Hassanpour, H. Dehghani, A.Z. Snyder, T. Hershey, J.P. Culver, Mapping distributed brain function and networks with diffuse optical tomography. Nat Photon 8, 448–454 (2014)

    Article  Google Scholar 

  11. A. Maki, Y. Yamashita, H. Koizumi, Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy- and total-hemoglobin concentration. Med. Phys. 28, 1108 (2001)

    Google Scholar 

  12. M.A. Franceschini, G. Strangman, D.A. Boas, Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters. Neuroimage 18, 865 (2003)

    Article  Google Scholar 

  13. T. Durduran, R. Choe, W.B. Baker, A.G. Yodh, Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys. 73, 076701 (2010)

    Google Scholar 

  14. T.J. Farrell, M.S. Patterson, B. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 19, 879 (1992)

    Article  Google Scholar 

  15. J. Ripoll, Light diffusion in turbid media with biomedical applications, Universidad Autonoma de Madrid, 2000

    Google Scholar 

  16. D.A. Boas, Diffuse photon probes of structural and dynamical properties of turbid media theory and biomedical applications, University of Pennsylvania, 1996

    Google Scholar 

  17. M.A. O’Leary, Imaging with diffuse photon density waves. University of Pennsylvania, 1996

    Google Scholar 

  18. D.R. Leff, O.J. Warren, L.C. Enfield, A. Gibson, T. Athanasiou, D.K. Patten, J. Hebden, G.Z. Yang, A. Darzi, Diffuse optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res. Treat. 108, 9–22 (2008)

    Article  Google Scholar 

  19. T. Durduran, R. Choe, J.P. Culver, L. Zubkov, M.J. Holboke, J. Giammarco, B. Chance, A.G. Yodh, Bulk optical properties of healthy female breast tissue. Phys. Med. Biol. 47, 2847 (2002)

    Article  Google Scholar 

  20. T. Yates, J.C. Hebden, A. Gibson, N. Everdell, S.R. Arridge, M. Douek, Optical tomography of the breast using a multi-channel time-resolved imager. Phys. Med. Biol. 50, 2503 (2005)

    Article  Google Scholar 

  21. M.L. Flexman, M.A. Khalil, R. Al Abdi, H.K. Kim, C.J. Fong, E. Desperito, D.L. Hershman, R.L. Barbour, A.H. Hielscher, Digital optical tomography system for dynamic breast imaging. J. Biomed. Opt. 16, 076014–076016 (2011)

    Google Scholar 

  22. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St.-Jean, F.d.r. Lesage, D. Hall, D.A. Boas, M. Polyzos, Time-domain optical mammography Softscan: initial results on detection and characterization of breast tumors, pp. 188–197 (2004)

    Google Scholar 

  23. Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, S.H. Kurtzman, Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases. Neoplasia 5, 379 (2003)

    Article  Google Scholar 

  24. N. Chen, Q. Zhu, S.H. Kurtzman, Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound. Opt. Lett. 28, 337 (2003)

    Article  Google Scholar 

  25. L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, A. Gibson, Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography. J. Biomed. Opt. 18, 056012–056012 (2013)

    Article  Google Scholar 

  26. C.H. Schmitz, M. Löcker, J.M. Lasker, A.H. Hielscher, R.L. Barbour, Instrumentation for fast functional optical tomography. Rev. Sci. Instrum. 73, 429–439 (2002)

    Article  Google Scholar 

  27. S. Srinivasan, C.M. Carpenter, H.R. Ghadyani, S.J. Taka, P.A. Kaufman, R.M. DiFlorio-Alexander, W.A. Wells, B.W. Pogue, K.D. Paulsen, Image guided near-infrared spectroscopy of breast tissue in vivo using boundary element method. J. Biomed. Opt. 15, 061703–061703–061703–061708 (2010)

    Article  Google Scholar 

  28. H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M.J. Yaffe, G.J. Czarnota, Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer. Clin. Cancer Res. 16, 2605–2614 (2010)

    Article  Google Scholar 

  29. B.J. Tromberg, A.E. Cerussi, Imaging breast cancer chemotherapy response with light. Clin. Cancer Res. 16, 2486–2488 (2010)

    Article  Google Scholar 

  30. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, U. Dirnagl, Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett. 154, 101–104 (1993)

    Article  Google Scholar 

  31. Y. Hoshi, M. Tamura, Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci. Lett. 150, 5–8 (1993)

    Article  Google Scholar 

  32. T. Kato, A. Kamei, S. Takashima, T. Ozaki, Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J. Cereb. Blood Flow Metab. 13, 516–520 (1993)

    Article  Google Scholar 

  33. J.H. Meek, M. Firbank, C.E. Elwell, J. Atkinson, O. Braddick, J.S. Wyatt, Regional hemodynamic responses to visual stimulation in awake infants. Pediatr. Res. 43, 840–843 (1998)

    Article  Google Scholar 

  34. Y. Hoshi, B.H. Tsou, V.A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, I. Oda, Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks. NeuroImage 20, 1493–1504 (2003)

    Article  Google Scholar 

  35. F. Okada, Y. Tokumitsu, Y. Hoshi, M. Tamura, Impaired interhemispheric integration in brain oxygenation and hemodynamics in schizophrenia. Eur. Arch. Psychiatry Clin. Nuerosci. 244, 17–25 (1994)

    Article  Google Scholar 

  36. A.J. Fallgatter, W.K. Strik, Reduced frontal functional asymmetry in schizophrenia during a cued continuous performance test assessed with near-infrared spectroscopy. Schizophr. Bull. 26, 913–919 (2000)

    Article  Google Scholar 

  37. T. Shinba, M. Nagano, N. Kariya, K. Ogawa, T. Shinozaki, S. Shimosato, Y. Hoshi, Near-infrared spectroscopy analysis of frontal lobe dysfunction in schizophrenia. Biol. Psychiatry 55, 154–164 (2004)

    Google Scholar 

  38. T. Suto, M. Fukuda, M. Ito, T. Uehara, M. Mikuni, Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol. Psychiatry 55, 501–511 (2004)

    Google Scholar 

  39. C. Hock, K. Villringer, F. Müller-Spahn, R. Wenzel, H. Heekeren, S. Schuh-Hofer, M. Hofmann, S. Minoshima, M. Schwaiger, U. Dirnagl, A. Villringer, Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)—correlation with simultaneous rCBF-PET measurements. Brain Res. 755, 293–303 (1997)

    Article  Google Scholar 

  40. A.-C. Ehlis, C.G. Bähne, C.P. Jacob, M.J. Herrmann, A.J. Fallgatter, Reduced lateral prefrontal activation in adult patients with attention-deficit/hyperactivity disorder (ADHD) during a working memory task: a functional near-infrared spectroscopy (fNIRS) study. J. Psychiatr. Res. 42, 1060–1067 (2008)

    Google Scholar 

  41. H. Obrig, J. Steinbrink, Non-invasive optical imaging of stroke. Philosophical transactions of the royal society a: mathematical, physical and engineering sciences 369, 4470–4494 (2011)

    Article  Google Scholar 

  42. M.N. Kim, T. Durduran, S. Frangos, B.L. Edlow, E.M. Buckley, H.E. Moss, C. Zhou, G.Q. Yu, R. Choe, E. Maloney-Wilensky, R.L. Wolf, M.S. Grady, J.H. Greenberg, J.M. Levine, A.G. Yodh, J.A. Detre, W.A. Kofke, Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit. Care 12, 173–180 (2010)

    Article  Google Scholar 

  43. P.J. Kirkpatrick, J. Lam, P. Al-Rawi, P. Smielewski, M. Czosnyka, Defining thresholds for critical ischemia by using near-infrared spectroscopy in the adult brain. J. Neurosurg. 89, 389–394 (1998)

    Article  Google Scholar 

  44. A. Gallagher, M. Lassonde, D. Bastien, P. Vannasing, F. Lesage, C. Grova, A. Bouthillier, L. Carmant, F. Lepore, R. Béland, D.K. Nguyen, Non-invasive pre-surgical investigation of a 10 year-old epileptic boy using simultaneous EEG–NIRS. Seizure—Eur. J. Epilepsy 17, 576–582 (2008)

    Google Scholar 

  45. L.S.L. Arakaki, V. Ntziachristos, B. Chance, J.S. Leigh, J.C. Schotland, Optical diffusion tomography of the exercising human forearm. Biomed. Opt. Spectrosc. Diagn. 38, 374–377 (2000)

    Google Scholar 

  46. G.Q. Yu, Y. Shang, Y.Q. Zhao, R. Cheng, L.X. Dong, S.P. Saha, Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies. J Biomed. Opt. 16, 027004 (2011)

    Google Scholar 

  47. Y. Yamada, S. Okawa, Diffuse optical tomography: present status and its future. Opt. Rev. 21, 185–205 (2014)

    Article  Google Scholar 

  48. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, V. Ntziachristos, Free-space fluorescence molecular tomography utilizing 360° geometry projections. Opt. Lett. 32, 382–384 (2007)

    Article  Google Scholar 

  49. M. Solomon, B.R. White, R.E. Nothdruft, W. Akers, G. Sudlow, A.T. Eggebrecht, S. Achilefu, J.P. Culver, Video-rate fluorescence diffuse optical tomography for in vivo sentinel lymph node imaging. Biomed. Opt. Express 2, 3267–3277 (2011)

    Article  Google Scholar 

  50. J. Dong, R. Bi, J.H. Ho, P.S.P. Thong, K.-C. Soo, K. Lee, Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator. J. Biomed. Opt. 17, 097001–097004 (2012)

    Article  Google Scholar 

  51. D.A. Boas, A.G. Yodh, Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. J. Opt. Soc. Am. A 14, 192–215 (1997)

    Article  Google Scholar 

  52. S.A. Carp, G.P. Dai, D.A. Boas, M.A. Franceschini, Y.R. Kim, Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring. Biomed Opt Express 1, 553–565 (2010)

    Article  Google Scholar 

  53. G.Q. Yu, T.F. Floyd, T. Durduran, C. Zhou, J.J. Wang, J.A. Detre, A.G. Yodh, Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI. Opt. Express 15, 1064–1075 (2007)

    Article  Google Scholar 

  54. E.M. Buckley, N.M. Cook, T. Durduran, M.N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C.M. Sehgal, D.J. Licht, P.H. Arger, M.E. Putt, H.H. Hurt, A.G. Yodh, Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound. Opt. Express 17, 12571–12581 (2009)

    Article  Google Scholar 

  55. R. Bi, J. Dong, K. Lee, Deep tissue flowmetry based on diffuse speckle contrast analysis. Opt. Lett. 38, 1401–1403 (2013)

    Article  Google Scholar 

  56. R. Bi, J. Dong, K. Lee, Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis. Opt. Express 21, 22854–22861 (2013)

    Article  Google Scholar 

  57. K. Lee, R. Bi, J. Dong, Fast and affordable diffuse optical deep-tissue flowmetry. Opt. Photon. News 24, 32–32 (2013)

    Article  Google Scholar 

  58. Y. Shang, T.B. Symons, T. Durduran, A.G. Yodh, G.Q. Yu, Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise. Biomed. Opt. Express 1, 500–511 (2010)

    Article  Google Scholar 

  59. T. Durduran, R. Choe, G. Yu, C. Zhou, J.C. Tchou, B.J. Czerniecki, A.G. Yodh, Diffuse optical measurement of blood flow in breast tumors. Opt. Lett. 30, 2915–2917 (2005)

    Article  Google Scholar 

  60. J. Dong, H.J. Toh, P.S. Thong, C.S. Tee, R. Bi, K.-C. Soo, K. Lee, Hemodynamic monitoring of Chlorin e6-mediated photodynamic therapy using diffuse optical measurements. J. Photochem. Photobiol. B Biol. 140, 163–172 (2014)

    Google Scholar 

  61. J.H. Ho, J. Dong, K. Lee, Chapter 12. Diffuse optical imaging of the breast: recent progress, in Multimodality Breast Imaging: Diagnosis and Treatment, ed. by E.Y.K. Ng, U.R. Acharya, R.M. Rangayyan, J.S. Suri (SPIE, Washington, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kijoon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Dong, J., Bi, R., Lee, K. (2016). Deep Tissue Hemodynamic Monitoring Using Diffuse Optical Probes. In: Olivo, M., Dinish, U. (eds) Frontiers in Biophotonics for Translational Medicine. Progress in Optical Science and Photonics, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-287-627-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-627-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-626-3

  • Online ISBN: 978-981-287-627-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics