Skip to main content

Minimally Invasive Adult Spinal Deformity Correction

  • Chapter
  • First Online:
Core Techniques of Minimally Invasive Spine Surgery
  • 380 Accesses

Abstract

Adult spinal deformity (ASD) requires various surgical endeavors to achieve neural decompression and correction of segmental and global balance. However, ASD is often related to high risk of perioperative morbidity due to its extensive surgical field. Minimally invasive spinal surgery (MIS) has been widely adopted for degenerative spine surgery to decrease surgical complications as well as achieve appropriate clinical and radiological outcomes. With advancing surgical techniques and instruments for various surgical approaches, MIS deformity correction is increasing its indications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mummaneni PV, Hussain I, Shaffrey CI, et al. The minimally invasive interbody selection algorithm for spinal deformity. J Neurosurg Spine. 2021:1–8.

    Google Scholar 

  2. Mummaneni PV, Shaffrey CI, Lenke LG, et al. The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery. Neurosurg Focus. 2014;36(5):E6.

    Article  PubMed  Google Scholar 

  3. Park SW, Ko MJ, Kim YB, Le Huec JC. Correction of marked sagittal deformity with circumferential minimally invasive surgery using oblique lateral interbody fusion in adult spinal deformity. J Orthop Surg Res. 2020;15(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ohba T, Ebata S, Ikegami S, Oba H, Haro H. Indications and limitations of minimally invasive lateral lumbar interbody fusion without osteotomy for adult spinal deformity. Eur Spine J. 2020;29(6):1362–70.

    Article  PubMed  Google Scholar 

  5. Lee KY, Lee JH, Kang KC, et al. Minimally invasive multilevel lateral lumbar interbody fusion with posterior column osteotomy compared with pedicle subtraction osteotomy for adult spinal deformity. Spine J. 2020;20(6):925–33.

    Article  PubMed  Google Scholar 

  6. Anand N, Alayan A, Agrawal A, Kahwaty S, Nomoto E, Khandehroo B. Analysis of Spino-pelvic parameters and segmental lordosis with L5-S1 oblique lateral interbody fusion at the bottom of a long construct in circumferential minimally invasive surgical correction of adult spinal deformity. World Neurosurg. 2019;130:e1077–e83.

    Article  PubMed  Google Scholar 

  7. Theologis AA, Mundis GM Jr, Nguyen S, et al. Utility of multilevel lateral interbody fusion of the thoracolumbar coronal curve apex in adult deformity surgery in combination with open posterior instrumentation and L5-S1 interbody fusion: a case-matched evaluation of 32 patients. J Neurosurg Spine. 2017;26(2):208–19.

    Article  PubMed  Google Scholar 

  8. Than KD, Nguyen S, Park P, et al. 165 what is the effect of open vs percutaneous screws on complications among patients undergoing lateral interbody fusion for adult spinal deformity? Neurosurgery. 2016;63(Suppl 1):166.

    Article  Google Scholar 

  9. Strom RG, Bae J, Mizutani J, Valone F 3rd, Ames CP, Deviren V. Lateral interbody fusion combined with open posterior surgery for adult spinal deformity. J Neurosurg Spine. 2016;25(6):697–705.

    Article  PubMed  Google Scholar 

  10. Uribe JS, Deukmedjian AR. Visceral, vascular, and wound complications following over 13,000 lateral interbody fusions: a survey study and literature review. Eur Spine J. 2015;24(Suppl. 3):386–96.

    Article  PubMed  Google Scholar 

  11. Caputo AM, Michael KW, Chapman TM, et al. Extreme lateral interbody fusion for the treatment of adult degenerative scoliosis. J Clin Neurosci. 2013;20(11):1558–63.

    Article  PubMed  Google Scholar 

  12. Amin BY, Mummaneni PV, Ibrahim T, Zouzias A, Uribe J. Four-level minimally invasive lateral interbody fusion for treatment of degenerative scoliosis. Neurosurg Focus. 2013;35(Suppl. 2) Video 10

    Google Scholar 

  13. Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine. 2010;35(26 Suppl):S322–30.

    Article  PubMed  Google Scholar 

  14. Anand N, Baron EM, Khandehroo B, Kahwaty S. Long-term 2- to 5-year clinical and functional outcomes of minimally invasive surgery for adult scoliosis. Spine. 2013;38(18):1566–75.

    Article  PubMed  Google Scholar 

  15. Turner JD, Akbarnia BA, Eastlack RK, et al. Radiographic outcomes of anterior column realignment for adult sagittal plane deformity: a multicenter analysis. Eur Spine J. 2015;24(Suppl 3):427–32.

    Article  PubMed  Google Scholar 

  16. Saigal R, Mundis GM Jr, Eastlack R, Uribe JS, Phillips FM, Akbarnia BA. Anterior column realignment (ACR) in adult sagittal deformity correction: technique and review of the literature. Spine. 2016;41(Suppl 8):S66–73.

    PubMed  Google Scholar 

  17. Mundis GM Jr, Turner JD, Kabirian N, et al. Anterior column realignment has similar results to pedicle subtraction osteotomy in treating adults with sagittal plane deformity. World Neurosurg. 2017;105:249–56.

    Article  PubMed  Google Scholar 

  18. Godzik J, Pereira BA, Newcomb A, et al. Optimizing biomechanics of anterior column realignment for minimally invasive deformity correction. Spine J. 2020;20(3):465–74.

    Article  PubMed  Google Scholar 

  19. Godzik J, de Andrada PB, Sawa AGU, Lehrman JN, Mundis GM, Hlubek RJ, et al. Biomechanics of open versus minimally invasive deformity correction: comparison of stability and rod strain between pedicle subtraction osteotomy and anterior column realignment. J Neurosurg Spine. 2021:1–9.

    Google Scholar 

  20. Berjano P, Cecchinato R, Sinigaglia A, et al. Anterior column realignment from a lateral approach for the treatment of severe sagittal imbalance: a retrospective radiographic study. Eur Spine J. 2015;24(Suppl 3):433–8.

    Article  PubMed  Google Scholar 

  21. Ziino C, Konopka JA, Ajiboye RM, Ledesma JB, Koltsov JCB, Cheng I. Single position versus lateral-then-prone positioning for lateral interbody fusion and pedicle screw fixation. J Spine Surg. 2018;4(4):717–24.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lamartina C, Berjano P. Prone single-position extreme lateral interbody fusion (pro-XLIF): preliminary results. Eur Spine J. 2020;29(Suppl 1):6–13.

    Article  PubMed  Google Scholar 

  23. Wang MY, Uribe J, Mummaneni PV, et al. Minimally invasive spinal deformity surgery: analysis of patients who fail to reach minimal clinically important difference. World Neurosurg. 2020;137:e499–505.

    Article  PubMed  Google Scholar 

  24. Wang MY, Williams S, Mummaneni PV, Sherman JD. Minimally invasive percutaneous iliac screws: initial 24 case experiences with CT confirmation. Clin Spine Surg. 2016;29(5):E222–5.

    Article  PubMed  Google Scholar 

  25. Uribe JS, Deukmedjian AR, Mummaneni PV, et al. Complications in adult spinal deformity surgery: an analysis of minimally invasive, hybrid, and open surgical techniques. Neurosurg Focus. 2014;36(5):E15.

    Article  PubMed  Google Scholar 

  26. Haque RM, Mundis GM Jr, Ahmed Y, et al. Comparison of radiographic results after minimally invasive, hybrid, and open surgery for adult spinal deformity: a multicenter study of 184 patients. Neurosurg Focus. 2014;36(5):E13.

    Article  PubMed  Google Scholar 

  27. Hamilton DK, Kanter AS, Bolinger BD, et al. Reoperation rates in minimally invasive, hybrid and open surgical treatment for adult spinal deformity with minimum 2-year follow-up. Eur Spine J. 2016;25(8):2605–11.

    Article  PubMed  Google Scholar 

  28. Chan AK, Eastlack RK, Fessler RG, et al. Two- and three-year outcomes of minimally invasive and hybrid correction of adult spinal deformity. J Neurosurg Spine. 2022;36(4):595–608.

    Article  PubMed  Google Scholar 

  29. Barone G, Scaramuzzo L, Zagra A, Giudici F, Perna A, Proietti L. Adult spinal deformity: effectiveness of interbody lordotic cages to restore disc angle and spino-pelvic parameters through completely mini-invasive trans-psoas and hybrid approach. Eur Spine J. 2017;26(Suppl 4):457–63.

    Article  PubMed  Google Scholar 

  30. Pham MH, Shah VJ, Diaz-Aguilar LD, Osorio JA, Lehman RA. Minimally invasive multiple-rod constructs with robotics planning in adult spinal deformity surgery: a case series. Eur Spine J. 2022;31(1):95–103.

    Article  PubMed  Google Scholar 

  31. Hyun SJ, Kim KJ, Jahng TA. S2 alar iliac screw placement under robotic guidance for adult spinal deformity patients: technical note. Eur Spine J. 2017;26(8):2198–203.

    Article  PubMed  Google Scholar 

  32. Oh T, Park P, Miller CA, Chan AK, Mummaneni PV. Navigation-assisted minimally invasive surgery deformity correction. Neurosurg Clin N Am. 2018;29(3):439–51.

    Article  PubMed  Google Scholar 

  33. Anand N, Rosemann R, Khalsa B, Baron EM. Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus. 2010;28(3):E6.

    Article  PubMed  Google Scholar 

  34. Mulconrey DS, Bridwell KH, Flynn J, Cronen GA, Rose PS. Bone morphogenetic protein (RhBMP-2) as a substitute for iliac crest bone graft in multilevel adult spinal deformity surgery: minimum two-year evaluation of fusion. Spine. 2008;33(20):2153–9.

    Article  PubMed  Google Scholar 

  35. Mummaneni PV, Park P, Fu KM, et al. Does minimally invasive percutaneous posterior instrumentation reduce risk of proximal junctional kyphosis in adult spinal deformity surgery? Neurosurgery. 2016;78(1):101–8.

    Article  PubMed  Google Scholar 

  36. Bae J, Theologis AA, Strom R, et al. Comparative analysis of 3 surgical strategies for adult spinal deformity with mild to moderate sagittal imbalance. J Neurosurg Spine. 2018;28(1):40–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bae, J. (2023). Minimally Invasive Adult Spinal Deformity Correction. In: Ahn, Y., Park, JK., Park, CK. (eds) Core Techniques of Minimally Invasive Spine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-19-9849-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9849-2_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9848-5

  • Online ISBN: 978-981-19-9849-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics