Skip to main content

Overview of Minimally Invasive Spine Surgery with the Tubular Retractor

  • Chapter
  • First Online:
Core Techniques of Minimally Invasive Spine Surgery
  • 395 Accesses

Abstract

Spine surgeons have been trying to abstain from all intentional wrong-doing and harm while they treat various spinal diseases. However, conventional open spine surgery would inherently disrupt the posterior paraspinal muscles and lead to long-term muscle atrophy and chronic back pain. Consequently, minimally invasive spine surgery (MISS) has been developed to avoid them in the last decades, with the progress of tubular retractors, endoscopes, and microscopes.

With the integration of the microscope and tubular system, the MISS with tubular retractor gained popularity with minimally invasive spine surgeons, and numerous reports emerged for lumbar microdiscectomy, lumbar decompression, transforaminal lumbar interbody fusion, thoracic decompression, cervical foraminotomy, and cervical decompression. Although a learning curve problem might exist, the MISS with the tubular retractor would be performed more accurately, safely, and popularly.

The paramedian approach and mechanical features of the tubular retractor would attribute to maintaining the posterior paraspinal muscle integrity and may lead to more favorable long-term clinical outcomes and cost-effectiveness compared to conventional open surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stevens KJ, Spenciner DB, Griffiths KL, Kim KD, Zwienenberg-Lee M, Alamin T, et al. Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech. 2006;19:77–86.

    Article  PubMed  Google Scholar 

  2. Kim DH, O’Toole JE, Ogden AT, Eichholz KM, Song J, Christie SD, et al. Minimally invasive posterolateral thoracic corpectomy: cadaveric feasibility study and report of four clinical cases. Neurosurgery. 2009;64:746–52; discussion 752–3.

    Article  PubMed  Google Scholar 

  3. Arts MP, Brand R, van den Akker ME, Koes BW, Bartels RH, Peul WC. Tubular diskectomy vs conventional microdiskectomy for sciatica: a randomized controlled trial. JAMA. 2009;302:149–58.

    Article  CAS  PubMed  Google Scholar 

  4. Ryang YM, Oertel MF, Mayfrank L, et al. Standard open microdiscectomy versus minimal access trocar microdiscectomy: results of a prospective randomized study. Neurosurgery. 2008;62:174–81.

    Article  PubMed  Google Scholar 

  5. Righesso O, Falavigna A, Avanzi O. Comparison of open discectomy with microendoscopic discectomy in lumbar disc herniations: results of a randomized controlled trial. Neurosurgery. 2007;61:545–9; discussion 549.

    Article  PubMed  Google Scholar 

  6. Dasenbrock HH, Juraschek SP, Schultz LR, Witham TF, Sciubba DM, Wolinsky JP, et al. The efficacy of minimally invasive discectomy compared with open discectomy: a meta-analysis of prospective randomized controlled trials. J Neurosurg Spine. 2012;16:452–62.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weiner BK, Walker M, Brower RS, McCulloch JA. Microdecompression for lumbar spinal canal stenosis. Spine (Phila Pa 1976). 1999;24:2268–72.

    Article  CAS  PubMed  Google Scholar 

  8. Palmer S, Turner R, Palmer R. Bilateral decompressive surgery in lumbar spinal stenosis associated with spondylolisthesis: unilateral approach and use of a microscope and tubular retractor system. Neurosurg Focus. 2002;13:E4.

    Article  PubMed  Google Scholar 

  9. Costa F, Sassi M, Cardia A, Ortolina A, De Santis A, Luccarell G, et al. Degenerative lumbar spinal stenosis: analysis of results in a series of 374 patients treated with unilateral laminotomy for bilateral microdecompression. J Neurosurg Spine. 2007;7:579–86.

    Article  PubMed  Google Scholar 

  10. Asgarzadie F, Khoo LT. Minimally invasive operative management for lumbar spinal stenosis: overview of early and long-term outcomes. Orthop Clin North Am. 2007;38:387–99; abstract vi–vii.

    Article  PubMed  Google Scholar 

  11. Knio ZO, Hsu W, Marquez-Lara A, Luo TD, St Angelo JM, Medda S, et al. Far lateral tubular decompression: a case series studying one and two year outcomes with predictors of failure. Cureus. 2019;11:e5133.

    PubMed  PubMed Central  Google Scholar 

  12. Pirris SM, Dhall S, Mummaneni PV, Kanter AS. Minimally invasive approach to extraforaminal disc herniations at the lumbosacral junction using an operating microscope: case series and review of the literature. Neurosurg Focus. 2008;25:E10.

    Article  PubMed  Google Scholar 

  13. Lee S, Kang JH, Srikantha U, Jang IT, Oh SH. Extraforaminal compression of the L-5 nerve root at the lumbosacral junction: clinical analysis, decompression technique, and outcome. J Neurosurg Spine. 2014;20:371–9.

    Article  PubMed  Google Scholar 

  14. Anand N, Hamilton JF, Perri B, Miraliakbar H, Goldstein T. Cantilever TLIF with structural allograft and RhBMP2 for correction and maintenance of segmental sagittal lordosis: long-term clinical, radiographic, and functional outcome. Spine (Phila Pa 1976). 2006;31:E748–53.

    Article  PubMed  Google Scholar 

  15. Selznick LA, Shamji MF, Isaacs RE. Minimally invasive interbody fusion for revision lumbar surgery: technical feasibility and safety. J Spinal Disord Tech. 2009;22:207–13.

    Article  PubMed  Google Scholar 

  16. Shen FH, Samartzis D, Khanna AJ, Anderson DG. Minimally invasive techniques for lumbar interbody fusions. Orthop Clin North Am. 2007;38:373–86; abstract vi.

    Article  PubMed  Google Scholar 

  17. Smith JS, Shaffrey CI, Sansur CA, Berven SH, Fu KM, Broadstone PA, et al. Rates of infection after spine surgery based on 108,419 procedures: a report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine (Phila Pa 1976). 2011;36:556–63.

    Article  PubMed  Google Scholar 

  18. Parker SL, Adogwa O, Witham TF, Aaronson OS, Cheng J, McGirt MJ. Post-operative infection after minimally invasive versus open transforaminal lumbar interbody fusion (TLIF): literature review and cost analysis. Minim Invasive Neurosurg. 2011;54:33–7.

    Article  CAS  PubMed  Google Scholar 

  19. Pelton MA, Phillips FM, Singh K. A comparison of perioperative costs and outcomes in patients with and without workers’ compensation claims treated with minimally invasive or open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2012;37:1914–9.

    Article  PubMed  Google Scholar 

  20. Wang MY, Lerner J, Lesko J, McGirt MJ. Acute hospital costs after minimally invasive versus open lumbar interbody fusion: data from a US national database with 6106 patients. J Spinal Disord Tech. 2012;25:324–8.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng JS, Park P, Le H, Reisner L, Chou D, Mummaneni PV. Short-term and long-term outcomes of minimally invasive and open transforaminal lumbar interbody fusions: is there a difference? Neurosurg Focus. 2013;35:E6.

    Article  PubMed  Google Scholar 

  22. Parajón A, Alimi M, Navarro-Ramirez R, Christos P, Torres-Campa JM, Moriguchi Y, et al. Minimally invasive transforaminal lumbar interbody fusion: meta-analysis of the fusion rates. What is the optimal graft material? Neurosurgery. 2017;81:958–71.

    Article  PubMed  Google Scholar 

  23. Moon BJ, Kuh SU, Kim S, Kim KS, Cho YE, Chin DK. Prevalence, distribution, and significance of incidental thoracic ossification of the ligamentum flavum in Korean patients with back or leg pain: MR-based cross sectional study. J Korean Neurosurg Soc. 2015;58:112–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao W, Shen C, Cai R, Wu J, Zhuang Y, Cai Z, et al. Minimally invasive surgery for resection of ossification of the ligamentum flavum in the thoracic spine. Wideochir Inne Tech Maloinwazyjne. 2017;12:96–105.

    PubMed  PubMed Central  Google Scholar 

  25. Stillerman CB, Chen TC, Couldwell WT, Zhang W, Weiss MH. Experience in the surgical management of 82 symptomatic herniated thoracic discs and review of the literature. J Neurosurg. 1998;88:623–33.

    Article  CAS  PubMed  Google Scholar 

  26. Perez-Cruet MJ, Kim BS, Sandhu F, Samartzis D, Fessler RG. Thoracic microendoscopic discectomy. J Neurosurg Spine. 2004;1:58–63.

    Article  PubMed  Google Scholar 

  27. Smith JS, Eichholz KM, Shafizadeh S, Ogden AT, O’Toole JE, Fessler RG. Minimally invasive thoracic microendoscopic diskectomy: surgical technique and case series. World Neurosurg. 2013;80:421–7.

    Article  PubMed  Google Scholar 

  28. Yoshihara H. Surgical treatment for thoracic disc herniation: an update. Spine (Phila Pa 1976). 2014;39:E406–12.

    Article  PubMed  Google Scholar 

  29. Srikantha U, Hari A, Lokanath YK. Minimally invasive cervical laminoforaminotomy—technique and outcomes. J Craniovertebr Junction Spine. 2021;12:361–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Clark JG, Abdullah KG, Steinmetz MP, Benzel EC, Mroz TE. Minimally invasive versus open cervical foraminotomy: a systematic review. Global Spine J. 2011;1:9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hur JW, Kim JS, Shin MH, Ryu KS. Minimally invasive posterior cervical decompression using tubular retractor: the technical note and early clinical outcome. Surg Neurol Int. 2014;5:34.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chung H-J, Hur J-W, Ryu K-S, Kim J-S, Seong J-H. Clinical outcomes of minimally invasive posterior cervical decompression using a tubular retractor for the treatment of cervical spondylotic myelopathy: single-center experience with a minimum 12-month follow-up. Nerve. 2016;2:48–53.

    Article  Google Scholar 

  33. Kim KT, Lee SH, Suk KS, Bae SC. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine (Phila Pa 1976). 2006;31:712–6.

    Article  PubMed  Google Scholar 

  34. Chao Z, Yue Z, Tong-wei C, Jian W, Yong H, Yong P. Microendoscopic discectomy, a less traumatic procedure for lumbar disk herniation. Chin J Traumatol. 2007;10:311–4.

    PubMed  Google Scholar 

  35. Lombardi G, Grasso D, Berjano P, Banfi G, Lamartina C. Is minimally invasive spine surgery also minimally pro-inflammatory? Muscular markers, inflammatory parameters and cytokines to quantify the operative invasiveness assessment in spine fusion. Eur J Inflamm. 2014;12:237–49.

    Article  Google Scholar 

  36. Min SH, Kim MH, Seo JB, Lee JY, Lee DH. The quantitative analysis of back muscle degeneration after posterior lumbar fusion: comparison of minimally invasive and conventional open surgery. Asian Spine J. 2009;3:89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fan S, Hu Z, Zhao F, Zhao X, Huang Y, Fang X. Multifidus muscle changes and clinical effects of one-level posterior lumbar interbody fusion: minimally invasive procedure versus conventional open approach. Eur Spine J. 2010;19:316–24.

    Article  PubMed  Google Scholar 

  38. Kim DY, Lee SH, Chung SK, Lee HY. Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine (Phila Pa 1976). 2005;30:123–9.

    Article  PubMed  Google Scholar 

  39. Mori E, Okada S, Ueta T, Itaru Y, Maeda T, Kawano O, et al. Spinous process-splitting open pedicle screw fusion provides favorable results in patients with low back discomfort and pain compared to conventional open pedicle screw fixation over 1 year after surgery. Eur Spine J. 2012;21:745–53.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Al-Khouja LT, Baron EM, Johnson JP, Kim TT, Drazin D. Cost-effectiveness analysis in minimally invasive spine surgery. Neurosurg Focus. 2014;36:E4.

    Article  PubMed  Google Scholar 

  41. Webb J, Gottschalk L, Lee YP, Garfin S, Kim C. Surgeon perceptions of minimally invasive spine surgery. SAS J. 2008;2:145.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nowitzke AM. Assessment of the learning curve for lumbar microendoscopic discectomy. Neurosurgery. 2005;56:755–62; discussion 755–62.

    Article  PubMed  Google Scholar 

  43. Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res. 2014;472:1711–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, J.U., Kim, DH. (2023). Overview of Minimally Invasive Spine Surgery with the Tubular Retractor. In: Ahn, Y., Park, JK., Park, CK. (eds) Core Techniques of Minimally Invasive Spine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-19-9849-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9849-2_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9848-5

  • Online ISBN: 978-981-19-9849-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics