Skip to main content

Complex Gas–Water Relationship of the Ultradeep Carbonate Gas Reservoir

  • Chapter
  • First Online:
Ultradeep Carbonate Gas Reservoirs
  • 158 Accesses

Abstract

Most of the ultradeep carbonate gas reservoirs in the Sichuan Basin are connected with edge and bottom water bodies, and the reserves of gas reservoirs with water account for 80% of the total reserves. The Cambrian Longwangmiao Formation gas reservoir with severe water encroachment is a typical representative. The water encroachment characteristics of gas reservoirs are not only affected by external water bodies, but also closely related to their own initial water content conditions. Therefore, revealing the gas–water relationship in the reservoir under initial conditions and during exploitation is crucial for clarifying the water encroachment characteristics. The complex gas–water relationship in ultradeep carbonate gas reservoirs is mainly caused by the multiple types of reservoir media and strong heterogeneity. Insufficient understanding of the gas–water relationship not only affects the predictions of gas percolation characteristics and gas well production performance, but also restricts the long-term and efficient development of this type of gas reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An, S., Yao, J., Yang, Y. F., Zhang, L., Zhao, J. L., et al. (2016). Influence of pore structure parameters on flow characteristics based on a digital rock and the pore network model. Journal of Natural Gas Science and Engineering, 31, 156–163.

    Article  Google Scholar 

  • Bai, B., Missouri-Rolla, U. O., Liu, Y., Coste, J. P., & Li, L. (2007). Preformed particle gel for conformance control: Transport mechanism through porous media. SPE Reservoir Evaluation and Engineering, 10, 176–184.

    Article  Google Scholar 

  • Bonnet, J., & Lenormand, R. (1977). Constructing micromodels for the study of multiphase flow in porous media. Oil & Gas Science and Technology—Rev IFP, 42, 477–480.

    Google Scholar 

  • Buchgraber, M., Al-Dossary, M., Ross, C. M., & Kovscek, A. R. (2012). Creation of a dualporosity micromodel for pore-level visualization of multiphase flow. Journal of Petroleum Science and Engineering, 86–87, 27–38.

    Article  Google Scholar 

  • Chen, K. G., Wen, Y. N., He, T. H., Sun, W. M., Wang, C., et al. (2014). Irreducible water saturation models of tight sandstone gas reservoirs with low porosity and permeability and its application-taking a block of Shanxi Formation tight sandstone reservoir in Sulige gas field as an example. Natural Gas Geoscience, 25(2), 273–277.

    Google Scholar 

  • Cieslinski, J. T., & Mosdorf, R. (2005). Gas bubble dynamics-experiment and fractal analysis. International Journal of Heat and Mass Transfer, 48, 1808–1818.

    Article  Google Scholar 

  • Dai, J. Y., Li, J. T., Wang, B. G., & Pan, R. (2012). Distribution regularity and formation mechanism of gas and water in the western area of Sulige gas field, NW China. Petroleum Exploration and Development, 39, 560–566.

    Article  Google Scholar 

  • Davis, J. A., & Jones, S. C. (1968). Displacement mechanism of micellar solutions. Journal of Petroleum Technology, 20, 1415–1428.

    Article  Google Scholar 

  • Doryani, H., Malayeri, M. R., & Riazi, M. (2016). Visualization of asphaltene precipitation and deposition in a uniformly patterned glass micromodel. Fuel, 182, 613–622.

    Article  Google Scholar 

  • Fang, F. F., Li, X. Z., Gao, S. S., Xue, H., Zhu, W. Q., et al. (2016). Visual simulation experimental study on water invasion rules of gas reservoir with edge and bottom water. Natural Gas Geoscience, 27(12), 2246–2252.

    Google Scholar 

  • Geistlinger, H., & Mohammadian, S. (2015). Capillary trapping mechanism in strongly water wet systems: Comparison between experiment and percolation theory. Advances in Water Resources, 79, 35–50.

    Article  Google Scholar 

  • George, D. S., Hayat, O., & Kovscek, A. R. (2005). A microvisual study of solution-gas-drive mechanism in viscous oils. Journal of Petroleum Science and Engineering, 46, 101–119.

    Article  Google Scholar 

  • Han, X., Tan, X., Li, X., Pang, Y., & Zhang, L. (2022). Water invasion performance of complex fracture-vuggy gas reservoirs based on classification modeling. Advances in Geo-Energy Research, 5(2), 222–232.

    Article  Google Scholar 

  • Hatiboglu, C. U., & Babadagli, T. (2010). Experimental and visual analysis of Co- and countercurrent spontaneous imbibition for different viscosity ratios, interfacial tensions, and wettabilities. Journal of Petroleum Science and Engineering, 70, 214–228.

    Article  Google Scholar 

  • Hu, Y., Shao, Y., Lu, J. L., & Zhang, Y. F. (2011). Experimental study on occurrence models of water in pores and the influencing to the development of tight gas reservoir. Natural Gas Geoscience, 22(1), 176–181.

    Google Scholar 

  • Li, M. C., & Li, J. (2011). “Dynamic trap”: A main action of hydrocarbon charging to form accumulations in low permeability-tight reservoir. Acta Petrolei Sinica, 31, 718–722.

    Google Scholar 

  • Li, G., Ren, W. X., Meng, Y. F., Wang, C. L., & Wei, N. (2014). Micro-flow kinetics research on water invasion in tight sandstone reservoirs. Journal of Natural Gas Science and Engineering, 20, 184–191.

    Article  Google Scholar 

  • Li, X. Z., Guo, Z. H., Wan, Y. J., Liu, X. H., Zhang, M. L., et al. (2017). Geological characteristics and development strategies for Cambrian Longwangmiao Formation gas reservoir in Anyue gas field, Sichuan Basin, SW China. Petroleum Exploration and Development, 44(3), 398–406.

    Article  Google Scholar 

  • Liu, H. X., Ren, D., Gao, S. S., Hu, Z. M., Ye, L. Y., et al. (2015). Water influx mechanism and development strategy of gas reservoirs with edge and bottom water. Natural Gas Industry, 35(2), 47–53.

    Google Scholar 

  • Mahers, E. G., Wright, R. J., & Dawe, R. A. (1981). Visualization of the behavior of EOR reagents in displacements in porous media. Experimental Techniques, 13, 511–525.

    Google Scholar 

  • Mattax, C. C., & Kyte, J. R. (1961). Ever see a waterflood? Oil & Gas Journal, 59, 115–128.

    Google Scholar 

  • Mo, F., Du, Z. M., Peng, X. L., Tang, Y., & Sun, H. S. (2017). Pore-scale analysis of flow resistance in tight sandstones and its relationship with permeability jail. Journal of Natural Gas Science and Engineering, 44, 314–327.

    Article  Google Scholar 

  • Mohammadi, S., Ghazanfari, M. H., & Masihi, M. (2013a). A pore-level screening study on miscible/immiscible displacements in heterogeneous models. Journal of Petroleum Science and Engineering, 110, 40–54.

    Article  Google Scholar 

  • Mohammadi, S., Maghzi, A., Ghazanfari, M. H., Masihi, M., Mohebbi, A., et al. (2013b). On the control of glass micro-model characteristics developed by laser technology. Energy Sources, Part A, 35, 193–201.

    Article  Google Scholar 

  • Mosavat, N., & Torabi, F. (2016). Micro-optical analysis of carbonated water injection in irregular and heterogeneous pore geometry. Fuel, 175, 191–201.

    Article  Google Scholar 

  • Ren, D. M., Zhang, L. H., & Zhu, S. Q. (2003). Study on transportation numerical simulation of coalbed methane reservoir. Journal of Hydrodynamics (Ser. B), 15, 63–67.

    Google Scholar 

  • Rezaee, M., Rostami, B., & Pourafshary, P. (2013). Heterogeneity effect on non-wetting phase trapping in strong water drive gas reservoirs. Journal of Natural Gas Science and Engineering, 14, 185–191.

    Article  Google Scholar 

  • Romero-Zeron, L. B., & Kantzas, A. (2007). The effect of wettability and pore geometry on foamed-gel-blockage performance. SPE Reservoir Evaluation and Engineering, 10, 150–163.

    Article  Google Scholar 

  • Rong, Y. S., Pu, W. F., Zhao, J. Z., Li, K. X., Li, X. H., et al. (2016). Experimental research of the tracer characteristic curves for fracture cave structures in a carbonate. Journal of Natural Gas Science and Engineering, 31, 417–427.

    Article  Google Scholar 

  • Sayegh, S. G., & Fisher, D. B. (2009). Enhanced oil recovery by CO2 flooding in homogeneous and heterogeneous 2D micromodels. Journal of Canadian Petroleum Technology, 48(8), 30–36.

    Article  Google Scholar 

  • Schneider, M., Osselin, F., Andrews, B., Rezgui, F., & Tabeling, P. (2011). Wettability determination of core samples through visual rock and fluid imaging during fluid injection. Journal of Petroleum Science and Engineering, 78, 476–485.

    Article  Google Scholar 

  • Smith, J. D., Chatzis, I., & Ioannidis, M. A. (2005). A new technique to measure the breakthrough capillary pressure. Journal of Canadian Petroleum Technology, 44, 25–31.

    Article  Google Scholar 

  • Sohrabi, M., Kechut, N. I., Riazi, M., Jamiolahmady, M., Ireland, S., et al. (2012). Coreflooding studies to investigate the potential of carbonated water injection as an injection strategy for improved oil recovery and CO2 storage. Transport in Porous Media, 91, 101–121.

    Article  Google Scholar 

  • Su, X. B., Wang, Q., Song, J. X., Chen, P. H., Yao, S., et al. (2017). Experimental study of water blocking damage on coal. Journal of Petroleum Science and Engineering, 156, 654–661.

    Article  Google Scholar 

  • Suekane, T., Zhou, N., Hosokawa, T., & Matsumoto, T. (2010). Direct observation of trapped gas bubbles by capillarity in sandy porous media. Transport in Porous Media, 82, 111–122.

    Article  Google Scholar 

  • Wan, J., Tokunaga, T. K., Tsang, C., & Bodvarsson, G. S. (1996). Improved glass micromodel methods for studies of flow and transport in fractured porous media. Water Resources Research, 32, 1955–1964.

    Article  Google Scholar 

  • Wang, X. M., Zhao, J. Z., & Liu, X. S. (2012). Occurrence state and production mechanism of formation water in tight sandstone reservoirs of Sulige area, Ordos Basin. Petroleum Geology & Experiment, 34, 400–405.

    Google Scholar 

  • Wang, Y., Liu, H., Pang, Z., & Gao, M. (2016). Visualization study on plugging characteristics of temperature-resistant gel during steam flooding. Energy & Fuels, 30, 6968–6976.

    Article  Google Scholar 

  • Wang, L., Yang, S. L., Liu, Y. C., Xu, W., Deng, H., et al. (2017). Experimental investigation on gas supply capability of commingled production in a fracture-cavity carbonate gas reservoir. Petroleum Exploration and Development, 44(5), 824–833.

    Article  Google Scholar 

  • Wang, L., Yang, S. L., Peng, X., Deng, H., Meng, Z., et al. (2018a). An improved visual investigation on gas–water flow characteristics and trapped gas formation mechanism of fracture–cavity carbonate gas reservoir. Journal of Natural Gas Science and Engineering, 49, 213–226.

    Article  Google Scholar 

  • Wang, L., Yang, S. L., Peng, X., Liao, Y., Liu, Y. C., et al. (2018b). Visual investigation of the occurrence characteristics of multi-type formation water in a fracture–cavity carbonate gas reservoir. Energies, 11, 661.

    Article  Google Scholar 

  • Wang, L., He, Y. M., Wang, Q., Liu, M. M., Jin, X., et al. (2020). Multiphase flow characteristics and EOR mechanism of immiscible CO2 water-alternating-gas injection after continuous CO2 injection: A micro-scale visual investigation. Fuel, 282, 118689.

    Article  Google Scholar 

  • Wang, J., Dong, M., & Asghari, K. (2006). Effect of oil viscosity on heavy oilwater relative permeability curves. In: 15th SPE-DOE improved oil recovery symposium, Tulsa, OK.

    Google Scholar 

  • Wu, Z. B., Liu, H. Q., Pang, Z. X., Wu, Y. L., & Wang, X. (2016). A visual investigation of enhanced heavy oil recovery by foam flooding after hot water injection. Journal of Petroleum Science and Engineering, 147, 361–370.

    Article  Google Scholar 

  • Wu, Z. B., Wang, L., Xie, C. J., & Yang, W. B. (2019). Experimental investigation on improved heavy oil recovery by air assisted steam injection with 2D visualized models. Fuel, 252, 109–115.

    Article  Google Scholar 

  • Yun, W., & Kovscek, A. R. (2015). Microvisual investigation of polymer retention on the homogeneous pore network of a micromodel. Journal of Petroleum Science and Engineering, 128, 115–127.

    Article  Google Scholar 

  • Zhang, L. H., Feng, G. Q., Li, X. P., & Li, Y. (2005). Water breakthrough simulation in naturally fractured gas reservoirs with water drive. Journal of Hydrodynamics (Ser. B), 17, 466–472.

    Google Scholar 

  • Zhao, J. Z., Cao, Q., Bai, Y. B., Er, C., Li, J., et al. (2016). Petroleum accumulation from continuous to discontinuous: Concept, classification and distribution. Acta Petrolei Sinica, 37, 145–159.

    Google Scholar 

  • Zhu, R., Lou, Z. H., Niu, S. F., Ma, X. J., Jin, A. M., et al. (2008). Occurrence of formation water and measures for water control of Ordovician reservoirs in Tahe oilfield. Journal of Zhejiang University (Engineering Science), 42, 1843–1848.

    Google Scholar 

  • Zhu, H. Y., Xu, X., Gao, Y., Hu, Y., An, L. Z., et al. (2014). Occurrence characteristics of tight sandstone pore water and its influence on gas seepage: A case study from the Denglouku gas reservoir in the Changling Gas Field, Southern Songliao Basin. Natural Gas Industry, 34, 54–58.

    Google Scholar 

  • Zhu, H. Y., Xu, X., An, L. Z., Guo, C. M., & Xiao, J. R. (2016). An experimental on occurrence and mobility of pore water in tight gas reservoirs. Acta Petrolei Sinica, 37, 230–236.

    Google Scholar 

  • Zou, C. N., Du, J. H., Xu, C. C., Wang, Z. C., Zhang, B. M., et al. (2014). Formation, distribution, resource potential, and discovery of Sinian-Cambrian giant gas field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41, 306–325.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L. (2023). Complex Gas–Water Relationship of the Ultradeep Carbonate Gas Reservoir. In: Ultradeep Carbonate Gas Reservoirs. Springer, Singapore. https://doi.org/10.1007/978-981-19-9708-2_3

Download citation

Publish with us

Policies and ethics