Skip to main content
Log in

Direct Observation of Trapped Gas Bubbles by Capillarity in Sandy Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We investigated the mechanism of residual gas trapping at a microscopic level. We imaged trapped air bubbles in a Berea sandstone chip after spontaneous imbibition at atmospheric pressure. The pore structure and trapped bubbles were observed by microfocused X-ray computed tomography. Distributions of trapped bubbles in Berea and Tako sandstone were imaged in coreflooding at a capillary number of 1.0 × 10−6. Trapped bubbles are of two types, those occupying the center of the pore with a pore-scale size and others having a pore-network scale size. In low-porosity media such as sandstone, connected bubbles contribute greatly to trapped gas saturation. Effects of capillary number and injected water volume were investigated using a packed bed of glass beads 600μm in diameter, which had high porosity (38%). The trapped N2 bubbles are stable against the water flow rate corresponding to a capillary number of 1.0 × 10−4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramoff M.D., Magelhaes P.J., Ram S.J.: Image processing with ImageJ. Biophotonics Int. 11, 36–44 (2004)

    Google Scholar 

  • Akervoll, I., Zweigel, P., Lindeberg, E.: CO2 storage in open, dipping aquifers. Proceedings of 8th International Conference on Greenhouse Gas Control Technologies (CD-ROM) (2006)

  • Al-Raoush R.I., Willson C.S.: A pore-scale investigation of a multiphase porous media system. J. Contam. Hydrol. 77, 67–89 (2005)

    Article  Google Scholar 

  • Benson, S.M., Tomutsa, L., Silin, D., Kneafsey, T.: Core scale and pore scale studies of carbon dioxide migration in saline formation. Proceedings of 8th International Conference on Greenhouse Gas Control Technologies (CD-ROM) (2006)

  • Chatzis I., Morrow N.R., Lim H.T.: Magnitude and detailed structure of residual oil saturation. SPE  J 23, 311–326 (1983)

    Google Scholar 

  • Dias M.M., Payatakes A.C.: Network models for two-phase flow in porous media Part 1. Immiscible microdisplacement of non-wetting fluids. J. Fluid Mech. 164, 305–336 (1986)

    Article  Google Scholar 

  • Ennis-King, J., Paterson, L.: Rate of dissolution due to convective mixing in the underground storage of carbon dioxide. Proceedings of 6th International Conference on Greenhouse Gas Control Technologies 1, 507–510 (2003)

  • Flett M., Gurton R., Weir G.: Heterogeneous saline formations for carbon dioxide disposal: impact of varying heterogeneity on containment and trapping. J. Pet. Sci. Eng. 57, 106–118 (2007)

    Article  Google Scholar 

  • Green D.W., Willite G.P. (eds): Enhanced Oil Recovery. Society of Petroleum Engineers Inc, Houston, TX (1998)

    Google Scholar 

  • Holtz, M.H.: Residual gas saturation to aquifer influx: a calculation method for 3-D computer reservoir model construction, SPE 75502, SPE Gas Technology Symp. (2002)

  • Imhoff P.T., Jaffe P.R., Pinder G.F.: An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media. Water Resour. Res. 30, 307–320 (1993)

    Article  Google Scholar 

  • Juans R., Spiteri E.J., Orr F.M. Jr, Blunt M.J.: Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42, W12418 (2006). doi:10.1029/2005WR004806

    Article  Google Scholar 

  • Knackstedt M.A., Sheppard A.P., Sahimi M.: Pore network modelling of two-phase flow in porous rock: the effect of correlated heterogeneity. Adv. Water Resour. 24, 257–277 (2001)

    Article  Google Scholar 

  • Lenormand R., Touboul E., Zarcone C.: numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988)

    Article  Google Scholar 

  • Lindeberg, E., Bergmo, P.: The long-term fate of CO2 injected into an aquifer. Proceedings of 6th International Conference on Greenhouse Gas Control Technologies 1, 489–494 (2003)

  • Lindquist W.B., Venkatarangan A.: Investigating 3D geometry of porous media form high resolution images. Phys. Chem. Earth (A) 25, 593–599 (1999)

    Article  Google Scholar 

  • Law D.H.-S., Bachu S.: Hydrogeological and numerical analysis of CO2 disposal in deep aquifers in the Alberta sedimentary basin. Energy Convers. Manage. 37, 1167–1174 (1996)

    Article  Google Scholar 

  • Mansoori, S.A., Iglauer, S., Pentland, C.H., Bijeljic, B., Blunt, M.J.: Measurement of non-wetting phase trapping applied to carbon dioxide storage. 9th International Conference on Greenhouse Gas Control Technologies, http://mit.edu/ghgt9/ (2008)

  • Metz, B., Davidson, O., de Coninck, H. C., Loos, M., Meyer, L. (eds.): IPCC: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York (2005)

  • Miller C.T., Poirier-McNeill M.M., Mayer A.S.: Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resour. Res. 36, 2783–2796 (1990)

    Article  Google Scholar 

  • Morrow N.R., Songkran B.: Effect of viscous and buoyancy forces on nonwetting phase trapping in porous media. In: In: Shah (eds) Surface Phenomena in Enhanced Oil Recovery, pp. 387–411. Plenum Press, New York (1981)

    Google Scholar 

  • Morrow, N. R., Chatzis, I., Taber, J. J. (1988). Entrapment and mobilization of residual oil in bead packs. SPE Reserv. Eng., 927–934

  • Okabe H., Blunt M.J.: Prediction of permeability for porous media reconstructed using multiple-point statics. Phys. Rev. E 70, 066135 (2004)

    Article  Google Scholar 

  • Øren P., Bakke S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46, 311–343 (2002)

    Article  Google Scholar 

  • Powers S.E., Abriola L.M., Weber W.J. Jr: An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface system: steady state mass transfer rates. Water Resour. Res. 28, 2691–2705 (1992)

    Article  Google Scholar 

  • Powers S.E., Abriola L.M., Weber W.J. Jr: An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface system: transient mass transfer rate. Water Resour. Res 30, 321–332 (1994)

    Article  Google Scholar 

  • Prodanović, M., Lindquist, W.B., Seright, R.S.: Residual fluid blobs and contact angle measurements from X-ray images of fluid displacement. Computational Methods in Water Resources XVI Conference (2006)

  • Prodanović M., Lindquist W.B., Seright R.S.: 3D image-based characterization of fluid displacement in a Berea core. Adv. Water Resour. 30, 214–226 (2007)

    Article  Google Scholar 

  • Pruess L., Xu T.F., Apps J., Garcia J.: Numerical modeling of aquifer disposal of CO2. SPE  J 8, 49–60 (2003)

    Google Scholar 

  • Qi R., LaForce T.C., Blunt M.J.: Design of carbon dioxide storage in aquifers. Int. J. Greenh. Gas Control 3, 195–205 (2009)

    Article  Google Scholar 

  • Rasband, W.S.: ImageJ, National Institute of Health, Bethesda, Maryland, USA, http://rsbweb.nih.gov/ij/ (1997–2008)

  • Suekane T., Nobuso T., Hirai S., Kiyota M.: Geological storage of carbon dioxide by residual gas and solubility trapping. Int. J. Greenh. Gas Control 2, 58–64 (2008a)

    Article  Google Scholar 

  • Suekane T., Kutsuna H., Hosokawa T., Matsumoto T., Kiyota M.: Visualization of micro-scale gas bubbles trapped in sandstones. Trans. Japan Soc. Mech. Eng. B 74, 2501–2507 (2008b) in Japanese

    Google Scholar 

  • Turner M.L., Knüfing L., Arns C.H., Skellariou A., Senden T.J., Sheppard A.P., Sok R.M., Limaye A., Pinczewski W.V., Knackstedt M.A.: Three-dimensional imaging of multiphase flow in porous media. Physica A 339, 166–172 (2004)

    Article  Google Scholar 

  • Vizika O., Payatakes A.C.: Parametric experimental study of forced imbibition in porous media. PhysicoChem. Hydrodyn. 11, 187–204 (1989)

    Google Scholar 

  • Zhou D., Dillard L.A., Blunt M.J.: A physically based model of dissolution of nonaquieous phase liquids in the saturated zone. Transp. Porous Media 39, 227–255 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Suekane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suekane, T., Zhou, N., Hosokawa, T. et al. Direct Observation of Trapped Gas Bubbles by Capillarity in Sandy Porous Media. Transp Porous Med 82, 111–122 (2010). https://doi.org/10.1007/s11242-009-9439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9439-5

Keywords

Navigation