Skip to main content

Polymeric Nanocomposite Membranes for Treatment of Industrial Effluents

  • Chapter
  • First Online:
Membranes for Water Treatment and Remediation

Abstract

Polymeric Membranes, as a thin layer barrier for various size differential separation, are usually integrated with chemical and biological treatment of wastewater settings. Membrane filtration (MF) technology is very effective for heavy metal and metalloid removal from wastewater that contains a higher concentration of pollutants. MF and ultrafiltration (UF) membranes are generally used for the filtration of water effluent. Moreover the suitable alteration of polymeric membranes by incorporation of carbon based and metal nanoparticles resulting in highly engineered polymeric nanocomposite membranes put forward great benefits such as high strength, stability, resistivity better permeability and antimicrobial and antifouling properties. The resultant water from these membrane processes may be used for diverse reuse applications after disinfection. Researchers are exploring membrane-based, deionization, and nanotechnology-inspired approaches for converting raw or effluent water fit for specific purposes and minimization of pollution load. We quite often gather information regarding the advantages and disadvantages of available technologies for water remediation, and along with recent progress, this chapter also contains the developmental history, current status, future prospects, and significance of exploring and utilizing polymeric nanocomposite membranes in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obotey Ezugbe E, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10(5):89

    Google Scholar 

  2. Nqombolo A et al (2018) Wastewater treatment using membrane technology. Wastewater Water Qual 29

    Google Scholar 

  3. Mehariya S et al (2020) Bio-based and agriculture resources for production of bioproducts. Current trends and future developments on (bio-) membranes, pp 263–282

    Google Scholar 

  4. Saleh TA, Gupta VK (2016) Nanomaterial and polymer membranes: synthesis, characterization, and applications. Elsevier

    Google Scholar 

  5. Jhaveri JH, Murthy Z (2016) A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379:137–154

    Article  CAS  Google Scholar 

  6. Ray P, Singh PS, Polisetti V (2020) Synthetic polymeric membranes for the removal of toxic pollutants and other harmful contaminants from water. Removal of toxic pollutants through microbiological and tertiary treatment. Elsevier, pp 43–99

    Chapter  Google Scholar 

  7. Al-Malack MH, Anderson G (1996) Coagulation-crossflow microfiltration of domestic wastewater. J Membr Sci 121(1):59–70

    Article  CAS  Google Scholar 

  8. Drioli E, Giorno L (2010) Comprehensive membrane science and engineering, vol 1. Newnes

    Google Scholar 

  9. Cakmakci M et al (2009) Comparison of nanofiltration and adsorption techniques to remove arsenic from drinking water. Desalin Water Treat 9(1–3):149–154

    Article  CAS  Google Scholar 

  10. Semiat R (2010) Water purification: materials and technologies

    Google Scholar 

  11. Zhang G et al (2013) Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. J Membr Sci 436:163–173

    Article  CAS  Google Scholar 

  12. Şahin D (2021) Forward osmosis membrane technology in wastewater treatment. Osmotically driven membrane processes

    Google Scholar 

  13. Li Z et al (2018) Direct and indirect seawater desalination by forward osmosis. Membrane-based salinity gradient processes for water treatment and power generation. Elsevier, pp 245–272

    Chapter  Google Scholar 

  14. Kayvani Fard A et al (2018) Inorganic membranes: preparation and application for water treatment and desalination. Materials 11(1):74

    Article  Google Scholar 

  15. Giwa A, Ahmed M, Hasan SW (2019) Polymers for membrane filtration in water purification. Polymeric materials for clean water. Springer, pp 167–190

    Chapter  Google Scholar 

  16. Teoh MM, Chung T-S (2009) Membrane distillation with hydrophobic macrovoid-free PVDF–PTFE hollow fiber membranes. Sep Purif Technol 66(2):229–236

    Article  CAS  Google Scholar 

  17. Baghbanzadeh M et al (2015) Charge tunneling along short oligoglycine chains. Angew Chem Int Ed 54(49):14743–14747

    Article  CAS  Google Scholar 

  18. Tibi F et al (2020) Fabrication of polymeric membranes for membrane distillation process and application for wastewater treatment: critical review. Process Saf Environ Prot 141:190–201

    Article  CAS  Google Scholar 

  19. Stephan AM, Teeters D (2003) Characterization of PVdF-HFP polymer membranes prepared by phase inversion techniques I. Morphology and charge–discharge studies. Electrochimica Acta 48(14–16):2143–2148

    Google Scholar 

  20. Fischer K et al (2015) Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. J Membr Sci 478:49–57

    Article  CAS  Google Scholar 

  21. Yang C et al (2014) CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. J Membr Sci 456:155–161

    Article  CAS  Google Scholar 

  22. Lee J et al (2013) Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J Membr Sci 448:223–230

    Article  CAS  Google Scholar 

  23. Diez B et al (2017) Fouling and biofouling resistance of metal-doped mesostructured silica/polyethersulfone ultrafiltration membranes. J Membr Sci 526:252–263

    Article  CAS  Google Scholar 

  24. Orooji Y et al (2017) Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion. Carbon 111:689–704

    Article  CAS  Google Scholar 

  25. Liang S et al (2014) Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors. J Membr Sci 463:94–101

    Article  CAS  Google Scholar 

  26. Drangert J-O, Sharatchandra H (2017) Addressing urban water scarcity: reduce, treat and reuse–the third generation of management to avoid local resources boundaries. Water Policy 19(5):978–996

    Article  Google Scholar 

  27. Shao L et al (2014) A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. J Membr Sci 461:10–21

    Article  CAS  Google Scholar 

  28. da Silva Burgal J et al (2015) Organic solvent resistant poly (ether-ether-ketone) nanofiltration membranes. J Membr Sci 479:105–116

    Article  Google Scholar 

  29. Liang Y et al (2020) Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat Commun 11(1):1–9

    Article  Google Scholar 

  30. Verbeke R, Gomez V, Vankelecom IF (2017) Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Prog Polym Sci 72:1–15

    Article  CAS  Google Scholar 

  31. Oh HJ, McGrath JE, Paul DR (2017) Kinetics of poly (ethylene glycol) extraction into water from plasticized disulfonated poly (arylene ether sulfone) desalination membranes prepared by solvent-free melt processing. J Membr Sci 524:257–265

    Article  CAS  Google Scholar 

  32. Nebipasagil A et al (2016) Synthesis and photocrosslinking of disulfonated poly (arylene ether sulfone) copolymers for potential reverse osmosis membrane materials. Polymer 93:14–22

    Article  CAS  Google Scholar 

  33. Vatanpour V, Madaeni SS, Khataee AR, Salehi E, Zinadini S (2012) TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. J Desal 292:19–29

    Article  CAS  Google Scholar 

  34. Zahid M, Rashid A, Akram S, Rehan ZA, Razzaq W (2018) A comprehensive review on polymeric nano-composite membranes for water treatment. J Membr Sci Technol 8(2):1–20

    Google Scholar 

  35. Pourjafar S, Rahimpour A, Jahanshahi M (2012) Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO2 nanoparticles for better performance and surface properties. JIEC 18:1398–1405

    CAS  Google Scholar 

  36. Ghosal K et al (2018) Electrical spinning to electrospinning: a brief history

    Google Scholar 

  37. Ghosh A et al (2021) Electrospun nanofibres: a new vista for detection and degradation of harmful endocrine-disrupting chemicals. In: Groundwater for sustainable development, p 100716

    Google Scholar 

  38. Yin X et al (2020) Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: filtration and adsorption. Sep Purif Technol 242:116794

    Article  CAS  Google Scholar 

  39. Orasugh JT, Ghosh SK, Chattopadhyay D (2020) Nanofiber-reinforced biocomposites. Fiber-reinforced nanocomposites: fundamentals and applications. Elsevier, pp 199–233

    Chapter  Google Scholar 

  40. Apel P (2001) Track etching technique in membrane technology. Radiat Meas 34(1–6):559–566

    Article  CAS  Google Scholar 

  41. Korolkov IV et al (2021) Preparation of hydrophobic PET track-etched membranes for separation of oil–water emulsion. Membranes 11(8):637

    Article  CAS  Google Scholar 

  42. Hasanzadeh A et al (2020) Separation of noble gases using CHA-type zeolite membrane: insights from molecular dynamics simulation. Chem Pap 74(9):3057–3065

    Article  CAS  Google Scholar 

  43. Remanan S et al (2018) Recent advances in preparation of porous polymeric membranes by unique techniques and mitigation of fouling through surface modification. Chem Select 3(2):609–633

    CAS  Google Scholar 

  44. Huang Y et al (2018) Robust preparation of tubular PTFE/FEP ultrafine fibers-covered porous membrane by electrospinning for continuous highly effective oil/water separation. J Membr Sci 568:87–96

    Article  CAS  Google Scholar 

  45. Wang X et al (2019) Fabrication of graphene oxide blended polyethersulfone membranes via phase inversion assisted by electric field for improved separation and antifouling performance. J Membr Sci 577:41–50

    Article  CAS  Google Scholar 

  46. Durmaz EN, Çulfaz-Emecen PZ (2018) Cellulose-based membranes via phase inversion using [EMIM] OAc-DMSO mixtures as solvent. Chem Eng Sci 178:93–103

    Article  CAS  Google Scholar 

  47. Li K et al (2018) Optimizing stretching conditions in fabrication of PTFE hollow fiber membrane for performance improvement in membrane distillation. J Membr Sci 550:126–135

    Article  CAS  Google Scholar 

  48. Ji D et al (2021) Solvent-free green fabrication of PVDF hollow fiber MF membranes with controlled pore structure via melt-spinning and stretching. J Membr Sci 621:118953

    Article  CAS  Google Scholar 

  49. Tasselli F (2014) Non-solvent induced phase separation process (NIPS) for membrane preparation. In: Drioli E, Giorno L (eds) Encyclopedia of membranes, pp 1–3

    Google Scholar 

  50. Kaya D, Keçeci K (2020) Track-etched nanoporous polymer membranes as sensors: a review. J Electrochem Soc 167(3):037543

    Article  CAS  Google Scholar 

  51. Eykens L, De Sitter K, Dotremont C, Pinoy L, Van der Bruggen B (2017) Sep Purif Technol 182:36

    Google Scholar 

  52. Lalia BS et al (2013) A review on membrane fabrication: Structure, properties and performance relationship. Desalination 326:77–95

    Article  CAS  Google Scholar 

  53. Mural PKS, Madras G, Bose S (2018) Polymeric membranes derived from immiscible blends with hierarchical porous structures, tailored bio-interfaces and enhanced flux: potential and key challenges. Nano-Struct Nano-objects 14:149–165

    Article  CAS  Google Scholar 

  54. Gopal R et al (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281(1–2):581–586

    Article  CAS  Google Scholar 

  55. Vanangamudi A et al (2018) Nanofibers for membrane applications

    Google Scholar 

  56. Zhang R et al (2016) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45(21):5888–5924

    Article  CAS  Google Scholar 

  57. Wu B, Fane AG (2012) Microbial relevant fouling in membrane bioreactors: influencing factors, characterization, and fouling control. Membranes 2(3):565–584

    Article  CAS  Google Scholar 

  58. Gul A, Hruza J, Yalcinkaya F (2021) Fouling and chemical cleaning of microfiltration membranes: a mini-review. Polymers 13(6):846

    Article  CAS  Google Scholar 

  59. Baker J, Dudley L (1998) Biofouling in membrane systems—a review. Desalination 118(1–3):81–89

    Article  CAS  Google Scholar 

  60. Shen L et al (2019) Efficient surface ionization and metallization of TFC membranes with superior separation performance, antifouling and anti-bacterial properties. J Membr Sci 586:84–97

    Article  CAS  Google Scholar 

  61. Nasrollahi N et al (2021) Photocatalytic-membrane technology: a critical review for membrane fouling mitigation. J Ind Eng Chem 93:101–116

    Article  CAS  Google Scholar 

  62. Damodar RA, You S-J, Chou H-H (2009) Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J Hazard Mater 172(2–3):1321–1328

    Article  CAS  Google Scholar 

  63. Yu H et al (2013) Development of a hydrophilic PES ultrafiltration membrane containing SiO2@ N-Halamine nanoparticles with both organic antifouling and antibacterial properties. Desalination 326:69–76

    Article  CAS  Google Scholar 

  64. Guo W, Ngo H-H, Li J (2012) A mini-review on membrane fouling. Biores Technol 122:27–34

    Article  CAS  Google Scholar 

  65. Emadzadeh D et al (2017) Surface modification of thin film composite membrane by nanoporous titanate nanoparticles for improving combined organic and inorganic antifouling properties. Mater Sci Eng C 75:463–470

    Article  CAS  Google Scholar 

  66. Ba C, Ladner DA, Economy J (2010) Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane. J Membr Sci 347(1–2):250–259

    Article  CAS  Google Scholar 

  67. Rezaei B, Lotfi-Forushani H, Ensafi A (2014) Modified Au nanoparticles-imprinted sol–gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination. Mater Sci Eng C 37:113–119

    Article  CAS  Google Scholar 

  68. Qin D et al (2018) Superior antifouling capability of hydrogel forward osmosis membrane for treating wastewaters with high concentration of organic foulants. Environ Sci Technol 52(3):1421–1428

    Article  CAS  Google Scholar 

  69. Maximous N et al (2010) Performance of a novel ZrO2/PES membrane for wastewater filtration. J Membr Sci 352(1–2):222–230

    Article  CAS  Google Scholar 

  70. Balta S et al (2012) A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO. J Membr Sci 389:155–161

    Article  CAS  Google Scholar 

  71. Rahimpour A et al (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107

    Article  CAS  Google Scholar 

  72. Nady N et al (2011) Mild and highly flexible enzyme-catalyzed modification of poly (ethersulfone) membranes. ACS Appl Mater Interfaces 3(3):801–810

    Article  CAS  Google Scholar 

  73. Yu C-H et al (2010) Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. J Hazard Mater 177(1–3):1153–1158

    Article  CAS  Google Scholar 

  74. Schulze A et al (2017) Bio-inspired polymer membrane surface cleaning. Polymers 9(3):97

    Article  Google Scholar 

  75. Kim J, Delio R, Dordick JS (2002) Protease-containing silicates as active antifouling materials. Biotechnol Prog 18(3):551–555

    Article  CAS  Google Scholar 

  76. Crawford B et al (2006) Factors influencing progress in establishing community-based marine protected areas in Indonesia. Coast Manag 34(1):39–64

    Article  Google Scholar 

  77. Tasso M et al (2009) Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. Biofouling 25(6):505–516

    Article  CAS  Google Scholar 

  78. Hobbs C, Taylor J, Hong S (2006) Effect of surface roughness on fouling of RO and NF membranes during filtration of a high organic surficial groundwater. J Water Supply: Res Technol AQUA 55(7–8):559–570

    Google Scholar 

  79. Vatanpour V et al (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375(1–2):284–294

    Article  CAS  Google Scholar 

  80. Zhong Z et al (2012) Membrane surface roughness characterization and its influence on ultrafine particle adhesion. Sep Purif Technol 90:140–146

    Article  CAS  Google Scholar 

  81. Woo SH, Min BR, Lee JS (2017) Change of surface morphology, permeate flux, surface roughness and water contact angle for membranes with similar physicochemical characteristics (except surface roughness) during microfiltration. Sep Purif Technol 187:274–284

    Article  CAS  Google Scholar 

  82. Das C, Gebru KA (2018) Polymeric membrane synthesis, modification, and applications: electro-spun and phase inverted membranes. CRC Press

    Google Scholar 

  83. Maiti A, Pandey A (2021) Polymer and waste plastic in membranes

    Google Scholar 

  84. Kroyer GT (1995) Impact of food processing on the environment—an overview. LWT-Food Sci Technol 28(6):547–552

    Article  CAS  Google Scholar 

  85. Muro C, Riera F, del Carmen Díaz M (2012) Membrane separation process in wastewater treatment of food industry. Food industrial processes–methods and equipment. InTech, Rijeka, pp 253–280

    Google Scholar 

  86. Mandal MK et al (2019) Membrane technologies for the treatment of pharmaceutical industry wastewater. Water and wastewater treatment technologies. Springer, pp 103–116

    Google Scholar 

  87. Rodríguez M et al (2005) Influence of nitrate and sulfate on the anaerobic treatment of pharmaceutical wastewater. Eng Life Sci 5(6):568–573

    Article  Google Scholar 

  88. Nandy T, Kaul S (2001) Anaerobic pre-treatment of herbal-based pharmaceutical wastewater using fixed-film reactor with recourse to energy recovery. Water Res 35(2):351–362

    Article  CAS  Google Scholar 

  89. Oktem YA et al (2006) Determination of optimum operating conditions of an acidification reactor treating a chemical synthesis-based pharmaceutical wastewater. Process Biochem 41(11):2258–2263

    Article  CAS  Google Scholar 

  90. Sreekanth D et al (2009) Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor. Biores Technol 100(9):2534–2539

    Article  CAS  Google Scholar 

  91. Deshpande AM, Satyanarayan S, Ramakant (2012) Kinetic analysis of an anaerobic fixed-film fixed bed-reactor treating wastewater arising from production of a chemically synthesized pharmaceutical. Environ Technol 33(11):1261–1270

    Google Scholar 

  92. Shi X et al (2014) Sequential anaerobic–aerobic treatment of pharmaceutical wastewater with high salinity. Biores Technol 153:79–86

    Article  CAS  Google Scholar 

  93. Ng KK et al (2014) A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater. Sep Purif Technol 132:634–643

    Article  CAS  Google Scholar 

  94. Kaya Y et al (2017) Treatment of chemical synthesis-based pharmaceutical wastewater in an ozonation-anaerobic membrane bioreactor (AnMBR) system. Chem Eng J 322:293–301

    Article  CAS  Google Scholar 

  95. Bera SP, Godhaniya M, Kothari C (2021) Emerging and advanced membrane technology for wastewater treatment: a review. J Basic Microbiol

    Google Scholar 

  96. Kimura K et al (2009) Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes. Water Res 43(15):3751–3758

    Article  CAS  Google Scholar 

  97. Radjenovic J, Petrovic M, Barceló D (2007) Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal Bioanal Chem 387(4):1365–1377

    Article  CAS  Google Scholar 

  98. Malik A, Grohmann E, Akhtar R (2014) Environmental deterioration and human health. Springer

    Google Scholar 

  99. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93(1):154–168

    Article  CAS  Google Scholar 

  100. Dasgupta J et al (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manag 147:55–72

    Article  CAS  Google Scholar 

  101. Van der Bruggen B et al (2017) The potential of membrane technology for treatment of textile wastewater. Sustainable membrane technology for water and wastewater treatment. Springer, pp 349–380

    Chapter  Google Scholar 

  102. Sahinkaya E et al (2019) Performance of a pilot-scale reverse osmosis process for water recovery from biologically-treated textile wastewater. J Environ Manag 249:109382

    Article  CAS  Google Scholar 

  103. Lafi R et al (2018) Treatment of textile wastewater by a hybrid ultrafiltration/electrodialysis process. Chem Eng Process Process Intensif 132:105–113

    Article  CAS  Google Scholar 

  104. Natarajan T et al (2013) Study on identification of leather industry wastewater constituents and its photocatalytic treatment. Int J Environ Sci Technol 10(4):855–864

    Article  CAS  Google Scholar 

  105. Zhang M, Zhang M (2007) Assessing the impact of leather industries on the quality of water discharged into the East China Sea from Wenzhou Watersheds. J Environ Manag 85(2):393–403

    Article  CAS  Google Scholar 

  106. Cassano A et al (2001) Treatment of aqueous effluents of the leather industry by membrane processes: a review. J Membr Sci 181(1):111–126

    Article  CAS  Google Scholar 

  107. Aljuboury D et al (2017) Treatment of petroleum wastewater by conventional and new technologies—a review. Glob Nest J 19:439–452

    Article  CAS  Google Scholar 

  108. Wang B et al (2015) Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant. Environ Sci Technol 49(9):5796–5804

    Article  CAS  Google Scholar 

  109. Munirasu S, Haija MA, Banat F (2016) Use of membrane technology for oil field and refinery produced water treatment—a review. Process Saf Environ Prot 100:183–202

    Article  CAS  Google Scholar 

  110. Adham S et al (2018) Membrane applications and opportunities for water management in the oil & gas industry. Desalination 440:2–17

    Article  CAS  Google Scholar 

  111. Emam EA, Moawad TM, Aboul-Gheit NA (2014) Evaluating the characteristics of offshore oilfield produced water. Pet Coal 56(4):363–372

    CAS  Google Scholar 

  112. Al-Kaabi M et al (2016) Enhancing the quality of “produced water” by activated carbon. In” Qatar Foundation annual research conference proceedings, vol 2016, no 1. Hamad bin Khalifa University Press (HBKU Press)

    Google Scholar 

  113. Janson A et al (2015) Assessing the biotreatability of produced water from a Qatari gas field. SPE J 20(05):1113–1119

    Article  CAS  Google Scholar 

  114. Goodman WH et al (2010) Scale and deposit formation in steam assisted gravity drainage (SAGD) facilities. In: International water conference, San Antonio, Texas, USA

    Google Scholar 

  115. Nghiem LD et al (2015) Coal seam gas produced water treatment by ultrafiltration, reverse osmosis and multi-effect distillation: a pilot study. Sep Purif Technol 146:94–100

    Article  CAS  Google Scholar 

  116. Ahmad NA et al (2018) Thin film composite membrane for oily waste water treatment: recent advances and challenges. Membranes 8(4):86

    Article  Google Scholar 

  117. García-Ivars J, Corbatón-Báguena M-J, Iborra-Clar M-I (2019) Development of mixed matrix membranes: incorporation of metal nanoparticles in polymeric membranes. Nanoscale materials in water purification. Elsevier, pp 153–178

    Chapter  Google Scholar 

  118. Ersahin ME et al (2018) Treatment of produced water originated from oil and gas production wells: a pilot study and cost analysis. Environ Sci Pollut Res 25(7):6398–6406

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to appreciate the Centre for Research in Nanoscience and Nanotechnology, and the Department of Polymer Science and Technology University of Calcutta for their financial and technical support.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the writing of this book chapter.

Corresponding authors

Correspondence to Jonathan Tersur Orasugh or Dipankar Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaman, A., Ghosh, A., Santra, S., Chakraborty, J., Orasugh, J.T., Chattopadhyay, D. (2023). Polymeric Nanocomposite Membranes for Treatment of Industrial Effluents. In: Nadda, A.K., Banerjee, P., Sharma, S., Nguyen-Tri, P. (eds) Membranes for Water Treatment and Remediation. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-9176-9_3

Download citation

Publish with us

Policies and ethics