Skip to main content

Surface Topography and Roughness in Vibration Assisted Machining

  • Chapter
  • First Online:
Vibration Assisted Machining

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

  • 172 Accesses

Abstract

Surface roughness is an important physical quantity which can influence the mechanical properties of materials, lubrication properties and fatigue strength. In most cases, it is a technical requirement for mechanical products and an index of performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu C (2008) Study on prediction of surface quality in machining process. J Mater Process Technol 205(1–3):439–450

    Article  Google Scholar 

  2. Benardos PG, Vosniakos GC (2003) Predicting surface roughness in machining: a review. Int J Mach Tools Manuf 43(8):833–844

    Article  Google Scholar 

  3. Ramesh S, Karunamoorthy L, Palanikumar K (2012) Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5). Measurement 45(5):1266–1276

    Article  Google Scholar 

  4. Hanief M, Wani MF (2015) Modeling and prediction of surface roughness for running-in wear using Gauss-Newton algorithm and ANN. Appl Surf Sci 357:1573–1577

    Article  Google Scholar 

  5. Asiltürk I, Neşeli S, Ince MA (2016) Optimisation of parameters affecting surface roughness of Co28Cr6Mo medical material during CNC lathe machining by using the Taguchi and RSM methods. Measurement 78:120–128

    Article  Google Scholar 

  6. Sangwan KS, Saxena S, Kant G (2015) Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach. Procedia CIRP 29:305–310

    Article  Google Scholar 

  7. Benardos PG, Vosniakos GC (2002) Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robotics Comput Integr Manuf 18(5–6):343–354

    Article  Google Scholar 

  8. Razfar MR, Farshbaf Zinati R, Haghshenas M (2011) Optimum surface roughness prediction in face milling by using neural network and harmony search algorithm. Int J Adv Manuf Technol 52(5):487–495

    Article  Google Scholar 

  9. Stout KJ, Davis EJ, Sullivan P (2010) Atlas of machined surfaces. Springer Science and Business Media

    Google Scholar 

  10. Kurella A, Dahotre NB (2005) Surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl 20(1):5–50

    Article  Google Scholar 

  11. Gandhi R, Moreno C, Wang Z et al (2014) Novel methods for scalable manufacturing of micro-textured surfaces. In: IIE Annual conference. proceedings. institute of industrial and systems engineers (IISE), 3757

    Google Scholar 

  12. Mann JB, Guo Y, Saldana C et al (2011) Enhancing material removal processes using modulation-assisted machining. Tribol Int 44(10):1225–1235

    Article  Google Scholar 

  13. Mann JB, Saldana CJ, Guo Y et al (2013) Effects of controlled modulation on surface textures in deep-hole drilling. Int J Mater Manuf 6(1):24–32

    Google Scholar 

  14. Altintas Y, Ber AA (2001) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Appl Mech Rev 54(5):B84–B84

    Article  Google Scholar 

  15. Friedrich CR, Kulkarni VP (2004) Effect of workpiece springback on micromilling forces. Microsyst Technol 10(6–7):472–477

    Article  Google Scholar 

  16. Guo P (2014) In: Development of the elliptical vibration texturing process. Northwestern University

    Google Scholar 

  17. Boothroyd G (1989) Non-conventional machining processes. Fundamentals of Machining and Machine Tools 491

    Google Scholar 

  18. Dong WP, Sullivan PJ, Stout KJ (1992) Comprehensive study of parameters for characterizing three-dimensional surface topography I: Some inherent properties of parameter variation. Wear 159(2):161–171

    Article  Google Scholar 

  19. Mereuta V, Buciumeanu M, Palaghian L (2013) 3D roughness parameters as factors in determining the evolution of effective stress concentration factors in fatigue processes. Appl Mech Mater 248:504–510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Bai .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Huazhong University of Science and Technology Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bai, W., Gao, Y., Sun, R. (2023). Surface Topography and Roughness in Vibration Assisted Machining. In: Vibration Assisted Machining. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-19-9131-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9131-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9130-1

  • Online ISBN: 978-981-19-9131-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics