Skip to main content

Affinity Biosensing: Modeling of Adsorption Kinetics and Fluctuation Dynamics

  • Chapter
  • First Online:
MEMS and Microfluidics in Healthcare

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 989))

  • 326 Accesses

Abstract

A vast number of processes that are crucial for biosensing in microfluidic MEMS devices for health applications are based on affinity bonding between analyte biomolecules and functionalized adsorption sites. Whether it is applied for the development of new drug discovery or new sensors for point of care devices, the final design relies greatly on modeling these interactions. This chapter aims to present a compendium of models used for the representation of these interactions. It addresses modeling in time and frequency domain, from a deterministic and from a stochastic point of view, with respect to monocomponent and multicomponent monolayer adsorption in microfluidic MEMS devices with or without direct flow-through and mass transfer effects. The goal is to contribute to sequential and concurrent multiscale modeling by offering a collection of theoretical kinetic models like pseudo first order and pseudo second order kinetic models. The text includes the criteria for the domains of viability of the presented models, stochastic simulation algorithms and comparative analysis of analytical vs numerical modeling with artificial intelligence-assisted approach complementing these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Christoffersson J et al (2021) Review on bio-inspired materials with nanotechnology applications in medical devices. J Phys Conf Ser 1948(1):012227. https://doi.org/10.1088/1742-6596/1948/1/012227

    Article  Google Scholar 

  2. Onbas R, Bilginer R, Arslan Yildiz A (2021) On-chip drug screening technologies for nanopharmaceutical and nanomedicine applications, pp 311–346. https://doi.org/10.1007/978-3-030-44925-4_8

  3. Theobald J et al (2018) Liver-kidney-on-chip to study toxicity of drug metabolites. ACS Biomater Sci Eng 4(1):78–89. https://doi.org/10.1021/ACSBIOMATERIALS.7B00417/SUPPL_FILE/AB7B00417_SI_001.PDF

    Article  Google Scholar 

  4. Sateesh J, Guha K, Dutta A, Sengupta P, Srinivasa Rao K (2019) Design and analysis of microfluidic kidney-on-chip model: fluid shear stress based study with temperature effect. Microsyst. Technol 25 (7):2553–2560. https://doi.org/10.1007/S00542-018-4261-Z/FIGURES/11

  5. Sateesh J, Guha K, Dutta A, Sengupta P, Srinivasa Rao K (2020) Regenerating re-absorption function of proximal convoluted tubule using microfluidics for kidney-on-chip applications. SN Appl Sci 2 (1): 1–11. https://doi.org/10.1007/S42452-019-1840-2/TABLES/2

  6. Guha K, Sateesh J, Dutta A, Sengupta P, Srinivasa Rao K, Agarwal A (2020) Mimicking kidney re-absorption using microfluidics by considering hydrostatic pressure inside kidney tubules: structural and analytical study. Microsyst. Technol 26 (6):1769–1776. https://doi.org/10.1007/S00542-019-04720-9/FIGURES/9.

  7. Sateesh J et al (2022) A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip. Biomicrofluidics 16(4):041501. https://doi.org/10.1063/5.0087852

    Article  Google Scholar 

  8. Sateesh J, Guha K, Dutta A, Sengupta P, Agarwal A, Srinivasa Rao K (2020) Recreating the size-dependent reabsorption function of proximal convoluted tubule towards artificial kidney applications: Structural analysis and computational study. Artif. Organs 44(8):E369–E381. https://doi.org/10.1111/AOR.13683

  9. J. Sateesh, K. Guha, A. Dutta, P. Sengupta, and K. Srinivasa Rao, “Design and Modeling of Bioreactor Utilizing Electrophoresis and Di-electrophoresis Techniques for Regenerating Reabsorption Function of Human Kidney PCT in Microfluidics Environment,” IEEE Trans. Nanobioscience, 2021, doi: https://doi.org/10.1109/TNB.2021.3131351.

  10. Huo X et al (2022) A lab-on-a-disc platform based on nickel nanowire net and smartphone imaging for rapid and automatic detection of foodborne bacteria. Chinese Chem Lett 33(4):2091–2095. https://doi.org/10.1016/J.CCLET.2021.08.027

    Article  Google Scholar 

  11. Pattanayak P et al (2021) Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluid Nanofluidics 25(12):1–28. https://doi.org/10.1007/S10404-021-02502-2/FIGURES/17

    Article  Google Scholar 

  12. Breault-Turcot J, Poirier-Richard HP, Couture M, Pelechacz D, Masson JF (2015) Single chip SPR and fluorescent ELISA assay of prostate specific antigen. Lab Chip 15(23):4433–4440. https://doi.org/10.1039/C5LC01045D

    Article  Google Scholar 

  13. Vaisocherová H, Faca VM, Taylor AD, Hanash S, Jiang S (2009) Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera. Biosens Bioelectron 24(7):2143–2148. https://doi.org/10.1016/J.BIOS.2008.11.015

    Article  Google Scholar 

  14. Nivedha S, Babu PR, Senthilnathan K (2018) Surface plasmon resonance: physics and technology. Curr. Sci 115(1):56–63 [Online]. Available http://search.ebscohost.com.proxy.kobson.nb.rs:2048/login.aspx?direct=true&db=aph&AN=130595119&site=eds-live

  15. Iqbal MA, Malik M, Shahid W, Ahmad W, Min-Dianey KAA, Pham PV (2021) Plasmonic 2D materials: Overview, advancements, future prospects and functional applications. https://doi.org/10.5772/INTECHOPEN.101580

  16. Nys G, Fillet M (2018) Microfluidics contribution to pharmaceutical sciences: From drug discovery to post marketing product management. J Pharm Biomed Anal 159:348–362. https://doi.org/10.1016/J.JPBA.2018.07.011

    Article  Google Scholar 

  17. Haghayegh F, Salahandish R, Zare A, Khalghollah M, Sanati-Nezhad A (2021) Immuno-biosensor on a chip: a self-powered microfluidic-based electrochemical biosensing platform for point-of-care quantification of proteins. Lab Chip 22(1):108–120. https://doi.org/10.1039/D1LC00879J

    Article  Google Scholar 

  18. Yaman G (2023) A suggestion of standard and optimized steps in the LOC (Lab on a Chip), LOD (Lab on a Disc), and POC (Point of Care) development process for biomedical applications: A case study about ESR. J Comput Appl Math 417:114626. https://doi.org/10.1016/J.CAM.2022.114626

    Article  Google Scholar 

  19. Manessis G, Gelasakis AI, Bossis I (2022) Point-of-care diagnostics for farm animal diseases: From biosensors to integrated lab-on-chip devices. Biosens 12(7):455. https://doi.org/10.3390/BIOS12070455

  20. Konoplev G et al (2022) Label-free physical techniques and methodologies for proteins detection in microfluidic biosensor structures. Biomed 10(2):207. https://doi.org/10.3390/BIOMEDICINES10020207.

  21. Wegner GJ et al (2004) Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. Anal Chem 76(19):5677–5684. https://doi.org/10.1021/AC0494275

    Article  Google Scholar 

  22. Klatt JN et al (2021) Blocking protein adsorption in microfluidic chips by a hydrophobin coating. ACS Appl Polym Mater 3(7):3278–3286. https://doi.org/10.1021/ACSAPM.0C01301/SUPPL_FILE/AP0C01301_SI_001.PDF

    Article  Google Scholar 

  23. Canabady-Rochelle LLS, Selmeczi K, Collin S, Pasc A, Muhr L, Boschi-Muller S (2018) SPR screening of metal chelating peptides in a hydrolysate for their antioxidant properties. Food Chem 239:478–485. https://doi.org/10.1016/J.FOODCHEM.2017.06.116

    Article  Google Scholar 

  24. Jokić I, Jakšić O, Frantlović M, Jakšić Z, Radulović K (2021) Modelling of plasmonic biosensor temporal response influenced by competitive adsorption and analyte depletion. Meas Sci Technol 32(9):95701. https://doi.org/10.1088/1361-6501/abfe85

    Article  Google Scholar 

  25. Zhang Y et al (2018) Single-molecule analysis of microRNA and logic operations using a smart plasmonic nanobiosensor. J Am Chem Soc 140(11):3988–3993. https://doi.org/10.1021/JACS.7B12772/SUPPL_FILE/JA7B12772_SI_001.PDF

    Article  Google Scholar 

  26. Jakšić O, Jokić I, Jakšić Z, Mladenović I, Radulović K, Frantlović M (2020) The time response of plasmonic sensors due to binary adsorption: analytical versus numerical modeling. Appl Phys A Mater Sci Process 126(5):342. https://doi.org/10.1007/s00339-020-03524-3

    Article  Google Scholar 

  27. Chen Y, Liu J, Yang Z, Wilkinson JS, Zhou X (2019) Optical biosensors based on refractometric sensing schemes: A review. Biosens Bioelectron 144:111693. https://doi.org/10.1016/J.BIOS.2019.111693

    Article  Google Scholar 

  28. Mishra S, Deshmukh R (2022) Overview on advancement in biosensing technology including its applications in healthcare. Curr Pharm Biotechnol 23. https://doi.org/10.2174/1389201023666220610163343.

  29. Karimi-Maleh H et al (2021) A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 184:113252. https://doi.org/10.1016/J.BIOS.2021.113252

    Article  Google Scholar 

  30. Saha TK, Mukherjee M, Dhar RS (2022) A comparative study on label-free detection of biomolecules using various biosensing techniques. Lect Notes Networks Syst 426:325–331. https://doi.org/10.1007/978-981-19-0745-6_35/COVER

    Article  Google Scholar 

  31. Jakšić O, Čupić Ž, Jakšić Z, Randjelović D, Kolar-Anić L (2013) Monolayer gas adsorption in plasmonic sensors: Comparative analysis of kinetic models. Russ J Phys Chem A 87(13):2134–2139. https://doi.org/10.1134/S0036024413130128

    Article  Google Scholar 

  32. Jokić I, Djurić Z, Frantlović M, Radulović K, Krstajić P (2012) Fluctuations of the mass adsorbed on microcantilever sensor surface in liquid-phase chemical and biochemical detection. Microelectron Eng 97:396–399. https://doi.org/10.1016/J.MEE.2012.03.038

    Article  Google Scholar 

  33. Jokić I, Djurić Z, Frantlović M, Radulović K, Krstajić P, Jokić Z (2012) Fluctuations of the number of adsorbed molecules in biosensors due to stochastic adsorption–desorption processes coupled with mass transfer. Sensors Actuators B Chem. 166–167:535–543. https://doi.org/10.1016/J.SNB.2012.03.004

    Article  Google Scholar 

  34. Djurić Z, Jokić I, Peleš A (2014) Fluctuations of the number of adsorbed molecules due to adsorption–desorption processes coupled with mass transfer and surface diffusion in bio/chemical MEMS sensors. Microelectron Eng 124:81–85. https://doi.org/10.1016/J.MEE.2014.06.001

    Article  Google Scholar 

  35. Jokić I, Djurić Z, Radulović K, Frantlović M, Milovanović GV, Krstajić PM (2021) Stochastic time response and ultimate noise performance of adsorption-based microfluidic biosensors. Biosens 11(6):194. https://doi.org/10.3390/BIOS11060194

  36. Jokić I (2021) Microfluidic adsorption-based biosensors: Mathematical models of time response and noise, considering mass transfer and surface heterogeneity. Biosens—Curr Nov Strateg Biosensing. https://doi.org/10.5772/INTECHOPEN.97070

    Article  Google Scholar 

  37. Jakšić OM, Jakšić ZS, Čupić ŽD, Randjelović DV, Kolar-Anić LZ (2014) Fluctuations in transient response of adsorption-based plasmonic sensors. Sensors Actuators B Chem. 190:419–428. https://doi.org/10.1016/j.snb.2013.08.084

    Article  Google Scholar 

  38. Gillespie DT, Hellander A, Petzold LR (2013) Perspective: Stochastic algorithms for chemical kinetics. J Chem Phys 138(17). https://doi.org/10.1063/1.4801941

  39. Jakšić O, Jakšić Z, Guha K, Jokić I, Frantlović M (2021) Equilibrium fluctuations in chemical reactions: a viable source of random data (numbers, maps and sequences). Microsyst Technol 27(9):3447–3456. https://doi.org/10.1007/s00542-020-05137-5

    Article  Google Scholar 

  40. Frantlović M, Jokić I, Djurić Z, Radulović K (2013) Analysis of the competitive adsorption and mass transfer influence on equilibrium mass fluctuations in affinity-based biosensors. Sensors Actuators B Chem. 189:71–79. https://doi.org/10.1016/J.SNB.2012.12.080

    Article  Google Scholar 

  41. Jokić I, Djurić Z, Radulović K, Frantlović M (2018) Analysis of stochastic time response of microfluidic biosensors in the case of competitive adsorption of two analytes. Proc 2(13):991. https://doi.org/10.3390/PROCEEDINGS2130991.

  42. Jokić I, Frantlović M, Djurić Z, Radulović K, Jokić Z (2015) Adsorption–desorption noise in microfluidic biosensors operating in multianalyte environments. Microelectron Eng 144:32–36. https://doi.org/10.1016/J.MEE.2015.02.032

    Article  Google Scholar 

  43. Jakšić OM, Jakšić Z, Rašljić MB, Kolar-Anić LZ (2019) On oscillations and noise in multicomponent adsorption: The nature of multiple stationary states. Adv Math Phys 2019: 1–12. https://doi.org/10.1155/2019/7687643

  44. Djurić Z, Jakšić O, Randjelović D (2002) Adsorption–desorption noise in micromechanical resonant structures. Sensors Actuators, A Phys. 96(2–3):244–251. https://doi.org/10.1016/S0924-4247(01)00834-2

    Article  Google Scholar 

  45. Jokić I, Jakšić O (2016) A second-order nonlinear model of monolayer adsorption in refractometric chemical sensors and biosensors case of equilibrium fluctuations. Opt Quantum Electron. 48(353):1–7. https://doi.org/10.1007/s11082-016-0620-0

    Article  Google Scholar 

  46. Jakšić Z, Jakšić O, Matović J (2009) Performance limits to the operation of nanoplasmonic chemical sensors: noise-equivalent refractive index and detectivity. J Nanophotonics 3(1):31770. https://doi.org/10.1117/1.3124792

    Article  Google Scholar 

  47. Djurić Z, Jokić I, Frantlović M, Jakšić O (2007) Fluctuations of the number of particles and mass adsorbed on the sensor surface surrounded by a mixture of an arbitrary number of gases. Sens Actuators, B 127(2):625–631. https://doi.org/10.1016/j.snb.2007.05.025

    Article  Google Scholar 

  48. Inci F, Saylan Y, Kojouri AM, Ogut MG, Denizli A, Demirci U (2020) A disposable microfluidic-integrated hand-held plasmonic platform for protein detection. Appl Mater Today 18:100478. https://doi.org/10.1016/J.APMT.2019.100478

    Article  Google Scholar 

  49. Mejía-Salazar JR, Cruz KR, Vásques EMM, de Oliveira ON (2020) Microfluidic point-of-care devices: New trends and future prospects for eHealth diagnostics. Sensors 20(7):1951. https://doi.org/10.3390/S20071951

  50. Lai X, Yang M, Wu H, Li D (2022) Modular microfluidics: Current status and future prospects. Micromachines 13(8), 1363. https://doi.org/10.3390/MI13081363

Download references

Acknowledgements

This research was funded by the Ministry of Education, Science, and Technological Development of Republic of Serbia, grant number 451-03-68/2022-14/200026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Jakšić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jakšić, O. (2023). Affinity Biosensing: Modeling of Adsorption Kinetics and Fluctuation Dynamics. In: Guha, K., Dutta, G., Biswas, A., Srinivasa Rao, K. (eds) MEMS and Microfluidics in Healthcare. Lecture Notes in Electrical Engineering, vol 989. Springer, Singapore. https://doi.org/10.1007/978-981-19-8714-4_12

Download citation

Publish with us

Policies and ethics