Skip to main content

Microfluidic Mixing for Biosensors

  • Chapter
  • First Online:
Miniature Fluidic Devices for Rapid Biological Detection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Among other factors, the performance of an affinity-based biosensor is dependent on the rate at which analyte is transported to, and captured by, its active sensing surface. The efficiency of analyte delivery can be increased via the use of microfluidics, albeit not without detraction, as microfluidic biosensors are often subjected to severe diffusion limitations when used for the detection of biologically relevant analytes. Such conditions lead to the formation of a boundary layer, void of analyte, which acts to resist the rate at which analyte is captured. It is often proposed to mix the fluid in the sensing chamber, where the exchange of depleted solution with fresh analyte can potentially increase sensor performance. The nature of analyte transport in a mixed channel is complex, however, and simply mixing the contents of a microchannel does not guarantee success. In this chapter, we review developments in the characterization (and prediction of) analyte transport in both mixed and unmixed channels. Our discussion focuses on the conditions under which mixing will (and will not) be beneficial and furthermore, the magnitude of performance increase that can be expected. Special attention is given to flow in the staggered herringbone mixer (SHM): a passive chaotic micromixer often used to enhance the performance of a biosensor. We review relevant experimental works on the topic and compare the results from several studies with the behavior expected from theory. Finally, we note several challenging aspects regarding the detection of circulating tumor cells which, due to their large size, are subject to additional transport mechanisms with respect to smaller analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The area for signal transduction is often the same as that for biocomponent immobilization, which is assumed herein.

  2. 2.

    As discussed later, the distinction between the two is very important: a reaction-limited biosensor will never benefit from the inclusion of mixing.

  3. 3.

    The rate at which the first step in Eq. (9) proceeds is dependent only on the magnitude of the difference between \(C_s\) and \(C_o\), and hence the presence of \(K_m\) in both the forward and reverse steps.

  4. 4.

    More specifically, the characteristic time for the analyte boundary layer to reach equilibrium is often much smaller than the characteristic time for the analyte to reach equilibrium.

  5. 5.

    Applicable for the geometries here, where a single wall acts to capture analyte. A value of \(\text {Gr} \gg 1\) indicates the boundary layer has not reached the top of the channel.

  6. 6.

    In this region, the rate of analyte capture is proportional to the flow rate, no matter how fast the fluid is stirred.

  7. 7.

    Where the analyte flux in the axial direction can be estimated as \(C_oD/\delta \), and thus \(J\approx C_oDH/\delta L\).

  8. 8.

    Measurement of these values can be accomplished using a variety of methods, the most popular of which the SPR method.

  9. 9.

    The mixing-cup concentration \(c_b\) represents the concentration one would obtain by collecting the microchannel effluent with a small cup.

  10. 10.

    For quasi-steady, diffusion-limited conditions, the limit of detection for a mixed biosensor (\(\text {LOD}_m\)) is related to that of an unmixed biosensor (LOD) of similar dimension as \(\text {LOD}_m = \text {LOD}\cdot E^{-1}\).

  11. 11.

    When flow is reversed, the analyte flux is highest where the grooves meet the channel sidewalls. This arrangement is nonoptimal due to the lower axial velocities near the channel edges.

  12. 12.

    Reprinted from Biosensors and Bioelectronics, 22, Golden J.P., Floyd-Smith T.M., Mott D.R., and Ligler F.S., Target delivery in a microfluidic immunosensor, 2763-2767, 2007, with permission from Elsevier.

  13. 13.

    The scaling laws in Sect. 3.3 predict that there will be an indefinite increase in the maximum sensor enhancement \(E_{max}\) with increases in Pe; however, this scaling law applies only to mixers of length \(L_{opt}\).

  14. 14.

    For unmixed flow in wide channels, the asymptotic local Sherwood number is \(\text {Sh}_\infty \approx 7.5\) [79] and furthermore, the integral in Eq. (21) is multiplied by a factor of 2 into account for the additional reactive surface.

  15. 15.

    From the Einstein–Stokes equation, the diffusivity of an analyte is inversely proportional to the fluid viscosity.

  16. 16.

    This applies for mixing in the sense as shown in Fig. 1, where there is no selective transport specific to the analyte (e.g., (di)electrophoresis, thermophoresis).

References

  1. Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, Malki A, Aziz H, Althani A, Hoorfar M (2015) Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. Sensors 15(12):30011–30031

    Article  CAS  Google Scholar 

  2. Estevez M-C, Alvarez M, Lechuga LM (2012) Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photonics Rev 6(4):463–487

    Article  Google Scholar 

  3. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  Google Scholar 

  4. White IM, Yazdi SH, Wei WY (2012) Optofluidic sers: synergizing photonics and microfluidics for chemical and biological analysis. Microfluid Nanofluid 13(2):205–216

    Article  CAS  Google Scholar 

  5. Rackus DG, Shamsi MH, Wheeler AR (2015) Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev 44(15):5320–5340

    Article  CAS  Google Scholar 

  6. Reverté L, Prieto-Simón B, Campàs M (2016) New advances in electrochemical biosensors for the detection of toxins: nanomaterials, magnetic beads and microfluidics systems. a review. Anal Chim Acta 908:8–21

    Article  Google Scholar 

  7. Sang S, Zhao Y, Zhang W, Li P, Hu J, Li G (2014) Surface stress-based biosensors. Biosens Bioelectron 51:124–135

    Article  CAS  Google Scholar 

  8. Skládal P (2016) Piezoelectric biosensors. TrAC Trends Anal Chem 79:127–133

    Article  Google Scholar 

  9. Yakovleva M, Bhand S, Danielsson B (2013) The enzyme thermistora realistic biosensor concept. A critical review. Anal Chimica Acta 766:1–12

    Google Scholar 

  10. Wang T, Zhou Y, Lei C, Luo J, Xie S, Pu H (2016) Magnetic impedance biosensor: a review. Biosens Bioelectron

    Google Scholar 

  11. Faustino V, Catarino SO, Lima R, Minas G (2015) Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J Biomech

    Google Scholar 

  12. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  CAS  Google Scholar 

  13. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977

    Article  CAS  Google Scholar 

  14. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  15. Squires TM, Messinger RJ, Manalis SR (2008) Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol 26(4):417–426

    Article  CAS  Google Scholar 

  16. Lynn NS, Šípová H, Adam P, Homola J (2013) Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity. Lab Chip 13(7):1413–1421

    Article  CAS  Google Scholar 

  17. Hofmann O, Voirin G, Niedermann P, Manz A (2002) Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. Application to immunoassays on planar optical waveguides. Anal Chem 74(20):5243–5250

    Article  CAS  Google Scholar 

  18. Yoon SK, Fichtl GW, Kenis PJ (2006) Active control of the depletion boundary layers in microfluidic electrochemical reactors. Lab Chip 6(12):1516–1524

    Article  CAS  Google Scholar 

  19. Mokrani A, Castelain C, Peerhossaini H (1997) The effects of chaotic advection on heat transfer. Int J Heat Mass Transf 40(13):3089–3104

    Article  CAS  Google Scholar 

  20. Jana S, Ottino J (1992) Chaos-enhanced transport in cellular flows. Philosophical transactions of the Royal Society of London a: mathematical. Phys Eng Sci 338(1651):519–532

    Google Scholar 

  21. Hessel V, Löwe H, Schönfeld F (2005) Micromixersa review on passive and active mixing principles. Chem Eng Sci 60(8):2479–2501

    Google Scholar 

  22. Chang C-C, Yang R-J (2007) Electrokinetic mixing in microfluidic systems. Microfluid Nanofluid 3(5):501–525

    Article  CAS  Google Scholar 

  23. Ottino JM Wiggins S (2004) Introduction: mixing in microfluidics. Philos Trans Math Phys Eng Sci pp. 923–935,

    Google Scholar 

  24. Lee C-Y, Wang W-T, Liu C-C, Fu L-M (2016) Passive mixers in microfluidic systems: a review. Chem Eng J 288:146–160

    Article  CAS  Google Scholar 

  25. Ward K, Fan ZH (2015) Mixing in microfluidic devices and enhancement methods. J Micromech Microeng 25(9):094001

    Article  Google Scholar 

  26. Stroock AD, Dertinger SK, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651

    Article  CAS  Google Scholar 

  27. Foley JO, Mashadi-Hossein A, Fu E, Finlayson BA, Yager P (2008) Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel. Lab Chip 8(4):557–564

    Article  CAS  Google Scholar 

  28. Golden JP, Floyd-Smith TM, Mott DR, Ligler FS (2007) Target delivery in a microfluidic immunosensor. Biosens Bioelectron 22(11):2763–2767

    Article  CAS  Google Scholar 

  29. Stott SL, Hsu C-H, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci 107(43):18392–18397

    Article  CAS  Google Scholar 

  30. McPeak KM, Baxter JB (2009) Zno nanowires grown by chemical bath deposition in a continuous flow microreactor. Cryst Growth Des 9(10):4538–4545

    Article  CAS  Google Scholar 

  31. Khinast JG, Bauer A, Bolz D, Panarello A (2003) Mass-transfer enhancement by static mixers in a wall-coated catalytic reactor. Chem Eng Sci 58(3):1063–1070

    Article  CAS  Google Scholar 

  32. Isfahani RN, Bigham S, Mortazavi M, Wei X, Moghaddam S (2015) Impact of micromixing on performance of a membrane-based absorber. Energy 90:997–1004

    Article  Google Scholar 

  33. Myszka DG, He X, Dembo M, Morton TA, Goldstein B (1998) Extending the range of rate constants available from biacore: interpreting mass transport-influenced binding data. Biophys J 75(2):583–594

    Article  CAS  Google Scholar 

  34. Eddowes M (1987) Direct immunochemical sensing: basic chemical principles and fundamental limitations. Biosensors 3(1):1–15

    Article  CAS  Google Scholar 

  35. Glaser RW (1993) Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics. Anal Biochem 213(1):152–161

    Article  CAS  Google Scholar 

  36. Biacore A (1997) Biaevaluation software handbook, version 3.0. Biacore AB, Uppsala, Sweden

    Google Scholar 

  37. Newman J (1973) The fundamental principles of current distribution and mass transport in electrochemical cells. Electroanal Chem 6:279–297

    Google Scholar 

  38. Ackerberg R, Patel R, Gupta S (1978) The heat/mass transfer to a finite strip at small péclet numbers. J Fluid Mech 86(01):49–65

    Article  CAS  Google Scholar 

  39. Zhang W, Stone H, Sherwood J (1996) Mass transfer at a microelectrode in channel flow. J Phys Chem 100(22):9462–9464

    Article  CAS  Google Scholar 

  40. Lynn NSS Jr, Homola J (2016) (bio) sensing using nanoparticle arrays: on the effect of analyte transport on sensitivity. Anal Chem 88(24):12145–12151

    Article  CAS  Google Scholar 

  41. Lynn NS, Henry CS, Dandy DS (2008) Microfluidic mixing via transverse electrokinetic effects in a planar microchannel. Microfluid Nanofluid 5(4):493–505

    Article  Google Scholar 

  42. Stroock AD, McGraw GJ (2004) Investigation of the staggered herringbone mixer with a simple analytical model. Philosophical transactions of the Royal Society of London a: mathematical. Phys Eng Sci 362(1818):971–986

    Article  Google Scholar 

  43. Wiggins S, Ottino JM (2004) Foundations of chaotic mixing. Philosophical transactions of the Royal Society of London a: mathematical. Phys Eng Sci 362(1818):937–970

    Article  Google Scholar 

  44. Ottino JM (1989) The kinematics of mixing: stretching, chaos, and transport, vol. 3. Cambridge University Press

    Google Scholar 

  45. Ottino J (1990) Mixing, chaotic advection, and turbulence. Annu Rev Fluid Mech 22(1):207–254

    Article  Google Scholar 

  46. Kirtland JD, McGraw GJ, Stroock AD (2006) Mass transfer to reactive boundaries from steady three-dimensional flows in microchannels. Phys Fluids 18(7):073602 (1994-present)

    Google Scholar 

  47. Lynn NS Jr, Homola J (2015) Biosensor enhancement using grooved micromixers: Part i, numerical studies. Anal Chem 87(11):5516–5523

    Article  CAS  Google Scholar 

  48. Kirtland JD, Siegel CR, Stroock AD (2009) Interfacial mass transport in steady three-dimensional flows in microchannels. New J Phys 11(7):075028

    Article  Google Scholar 

  49. Sundararajan P, Stroock AD (2012) Transport phenomena in chaotic laminar flows. Annu Rev Chem Biomol Eng 3:473–496

    Article  CAS  Google Scholar 

  50. Lynn NS Jr, Bockova M, Adam P, Homola J (2015) Biosensor enhancement using grooved micromixers: part ii, experimental studies. Anal Chem 87(11):5524–5530

    Google Scholar 

  51. Kang TG, Kwon TH (2004) Colored particle tracking method for mixing analysis of chaotic micromixers. J Micromech Microeng 14(7):891

    Article  Google Scholar 

  52. Aubin J, Fletcher DF, Xuereb C (2005) Design of micromixers using cfd modelling. Chem Eng Sci 60(8):2503–2516

    Article  CAS  Google Scholar 

  53. Yang J-T, Huang K-J, Lin Y-C (2005) Geometric effects on fluid mixing in passive grooved micromixers. Lab Chip 5(10):1140–1147

    Article  CAS  Google Scholar 

  54. Hassell D, Zimmerman W (2006) Investigation of the convective motion through a staggered herringbone micromixer at low reynolds number flow. Chem Eng Sci 61(9):2977–2985

    Article  CAS  Google Scholar 

  55. Lynn NS, Dandy DS (2007) Geometrical optimization of helical flow in grooved micromixers. Lab Chip 7(5):580–587

    Article  CAS  Google Scholar 

  56. Yun S, Lim G, Kang KH, Suh YK (2013) Geometric effects on lateral transport induced by slanted grooves in a microchannel at a low reynolds number. Chem Eng Sci 104:82–92

    Article  CAS  Google Scholar 

  57. Kim DS, Lee SW, Kwon TH, Lee SS (2004) A barrier embedded chaotic micromixer. J Micromech Microeng 14(6):798

    Article  CAS  Google Scholar 

  58. Sato H, Ito S, Tajima K, Orimoto N, Shoji S (2005) Pdms microchannels with slanted grooves embedded in three walls to realize efficient spiral flow. Sens Actuators A Phys 119(2):365–371

    Article  CAS  Google Scholar 

  59. Jain M, Rao A, Nandakumar K (2013) Numerical study on shape optimization of groove micromixers. Microfluid Nanofluid 15(5):689–699

    Article  CAS  Google Scholar 

  60. Liu Y, Deng Y, Zhang P, Liu Z, Wu Y (2013) Experimental investigation of passive micromixers conceptual design using the layout optimization method. J Micromech Microeng 23(7):075002

    Article  Google Scholar 

  61. Forbes TP, Kralj JG (2012) Engineering and analysis of surface interactions in a microfluidic herringbone micromixer. Lab Chip 12(15):2634–2637

    Article  CAS  Google Scholar 

  62. Wesseling P (2009) Principles of computational fluid dynamics, vol 29. Springer Science & Business Media

    Google Scholar 

  63. Salamon P, Fernàndez-Garcia D, Gómez-Hernández J (2006) Modeling mass transfer processes using random walk particle tracking. Water Resour Res 42(11)

    Google Scholar 

  64. Gomez-Aranzadi M, Arana S, Mujika M, Hansford D (2015) Integrated microstructures to improve surface-sample interaction in planar biosensors. IEEE Sens J 15(2):1216–1223

    Article  CAS  Google Scholar 

  65. Aref H (1984) Stirring by chaotic advection. J Fluid Mech 143:1–21

    Article  Google Scholar 

  66. Dong Y, Skelley AM, Merdek KD, Sprott KM, Jiang C, Pierceall WE, Lin J, Stocum M, Carney WP, Smirnov DA (2013) Microfluidics and circulating tumor cells. J Mol Diagn 15(2):149–157

    Article  Google Scholar 

  67. Hajba L, Guttman A (2014) Circulating tumor-cell detection and capture using microfluidic devices. TrAC Trends Anal Chem 59:9–16

    Article  CAS  Google Scholar 

  68. Miyamoto DT, Sequist LV, Lee RJ (2014) Circulating tumour cells [mdash] monitoring treatment response in prostate cancer. Nat Rev Clin Oncol 11(7):401–412

    Article  CAS  Google Scholar 

  69. Murlidhar V, Rivera-Báez L, Nagrath S (2016) Affinity versus label-free isolation of circulating tumor cells: who wins?. Small

    Google Scholar 

  70. Qian W, Zhang Y, Chen W (2015) Capturing cancer: emerging microfluidic technologies for the capture and characterization of circulating tumor cells. Small 11(32):3850–3872

    Article  CAS  Google Scholar 

  71. Smith JP, Barbati AC, Santana SM, Gleghorn JP, Kirby BJ (2012) Microfluidic transport in microdevices for rare cell capture. Electrophoresis 33(21):3133–3142

    Article  CAS  Google Scholar 

  72. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    Article  CAS  Google Scholar 

  73. Sheng W, Ogunwobi OO, Chen T, Zhang J, George TJ, Liu C, Fan ZH (2014) Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip 14(1):89–98

    Article  CAS  Google Scholar 

  74. Xue P, Ye K, Gao J, Wu Y, Guo J, Hui KM, Kang Y (2014) Isolation and elution of hep3b circulating tumor cells using a dual-functional herringbone chip. Microfluid Nanofluid 16(3):605–612

    Article  CAS  Google Scholar 

  75. Xue P, Wu Y, Guo J, Kang Y (2015) Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays. Biomed Microdevices 17(2):1–8

    Article  Google Scholar 

  76. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990

    Article  CAS  Google Scholar 

  77. Liu Z, Zhang W, Huang F, Feng H, Shu W, Xu X, Chen Y (2013) High throughput capture of circulating tumor cells using an integrated microfluidic system. Biosens Bioelectron 47:113–119

    Article  CAS  Google Scholar 

  78. Hyun K-A, Lee TY, Jung H-I (2013) Negative enrichment of circulating tumor cells using a geometrically activated surface interaction chip. Anal Chem 85(9):4439–4445

    Article  CAS  Google Scholar 

  79. Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena. Wiley

    Google Scholar 

  80. Wang S, Liu K, Liu J, Yu ZT-F, Xu X, Zhao L, Lee T, Lee EK, Reiss J, Lee Y-K et al (2011) Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed 50(13):3084–3088

    Article  CAS  Google Scholar 

  81. Zhao L, Lu Y-T, Li F, Wu K, Hou S, Yu J, Shen Q, Wu D, Song M, OuYang W-H et al (2013) High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing. Adv Mater 25(21):2897–2902

    Article  CAS  Google Scholar 

  82. Hou S, Zhao L, Shen Q, Yu J, Ng C, Kong X, Wu D, Song M, Shi X, Xu X et al (2013) Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells. Angew Chem Int Ed 52(12):3379–3383

    Article  CAS  Google Scholar 

  83. Shen Q, Xu L, Zhao L, Wu D, Fan Y, Zhou Y, OuYang W-H, Xu X, Zhang Z, Song M et al (2013) Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates. Adv Mater 25(16):2368–2373

    Article  CAS  Google Scholar 

  84. Fröhlich E, Bonstingl G, Höfler A, Meindl C, Leitinger G, Pieber TR, Roblegg E (2013) Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol Vitro 27(1):409–417

    Article  Google Scholar 

  85. Adams DL, Zhu P, Makarova OV, Martin SS, Charpentier M, Chumsri S, Li S, Amstutz P, Tang C-M (2014) The systematic study of circulating tumor cell isolation using lithographic microfilters. RSC Adv 4(9):4334–4342

    Article  CAS  Google Scholar 

  86. Czerlinski G, Reid D, Apostol A, Bauer K, Scarpelli D (1987) Determination of the density of cells from sedimentation studies at 1g. J Biol Phys 15(2):29–32

    Article  Google Scholar 

  87. Dharmasiri U, Balamurugan S, Adams AA, Okagbare PI, Obubuafo A, Soper SA (2009) Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Electrophoresis 30(18):3289–3300

    Article  CAS  Google Scholar 

  88. Staben ME, Zinchenko AZ, Davis RH (2003) Motion of a particle between two parallel plane walls in low-reynolds-number poiseuille flow. Phys Fluids 15(6):1711–1733

    Article  CAS  Google Scholar 

  89. Cho YI, Kensey KR (1991) Effects of the non-newtonian viscosity of blood on flows in a diseased arterial vessel. part 1: steady flows. Biorheology 28(3–4):241–262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from both the Praemium Academiae of the Academy of Sciences of the Czech Republic as well as the Czech Science Foundation (contract no. P205/12/G118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Scott Lynn Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lynn, N.S. (2018). Microfluidic Mixing for Biosensors. In: Oh, SH., Escobedo, C., Brolo, A. (eds) Miniature Fluidic Devices for Rapid Biological Detection. Integrated Analytical Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-64747-0_3

Download citation

Publish with us

Policies and ethics