Skip to main content

Functional Bone Regeneration in Oral and Maxillofacial Surgery: History, Definition, and Indications

  • Chapter
  • First Online:
Emerging Technologies in Oral and Maxillofacial Surgery

Abstract

Traditional methods of bone grafting have specified shortcomings and limitations. Recent advances in tissue engineering-based approaches have made it possible to regenerate bone in defective areas. Functional bone regeneration as a subgroup of patient-specific implants uses a tailored, exclusively designed scaffold to be placed in the defect and replaced with natural bone over time. Modern technologies like computer-aided design/computer-aided manufacturing (CAD/CAM) and additive manufacturing are employed to produce a scaffold with high adaptation to the anatomy of defective area, appropriate mechanical properties, desired microstructure and porosity, and degradation kinetics. Various materials have been used in scaffold fabrication; however, regarding the bone’s innate architecture and composition and insufficient features of a single material, polymer-ceramic composites are the best practical option. Polycaprolactone (PCL) and hydroxyapatite (HA) are among the most frequently utilized polymers and ceramics, respectively. Like materials, several 3D printing techniques could be used in scaffold production. Fused deposition modeling (FDM), the most common 3D printing used, is consonant with many materials and can produce scaffolds with favorable characteristics. Even though we are at the beginning of the path, reported cases of functional bone regeneration have demonstrated successful long-term outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohaghegh S, Hosseini SF, Rad MR, Khojateh A. 3D printed composite scaffolds in bone tissue engineering: a systematic review. Curr Stem Cell Res Ther. 2021;17:648. https://doi.org/10.2174/1574888X16666210810111754.

    Article  Google Scholar 

  2. Sanz-Sánchez I, Sanz-Martín I, Ortiz-Vigón A, et al. Complications in bone-grafting procedures: classification and management. Periodontol 2000. 2022;88:86–102. https://doi.org/10.1111/prd.12413.

    Article  PubMed  Google Scholar 

  3. Warnke PH, Springer ING, Wiltfang J, et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364:766–70. https://doi.org/10.1016/S0140-6736(04)16935-3.

    Article  CAS  PubMed  Google Scholar 

  4. Sándor GK, Tuovinen VJ, Wolff J, et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg. 2013;71:938–50. https://doi.org/10.1016/j.joms.2012.11.014.

    Article  PubMed  Google Scholar 

  5. Mesimäki K, Lindroos B, Törnwall J, et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38:201–9. https://doi.org/10.1016/j.ijom.2009.01.001.

    Article  PubMed  Google Scholar 

  6. Stirling Craig E, Yuhasz M, Shah A, et al. Simulated surgery and cutting guides enhance spatial positioning in free fibular mandibular reconstruction. Microsurgery. 2015;35:29–33. https://doi.org/10.1002/micr.22229.

    Article  CAS  PubMed  Google Scholar 

  7. Kinoshita Y, Maeda H. Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. Sci World J. 2013;2013:1. https://doi.org/10.1155/2013/863157.

    Article  CAS  Google Scholar 

  8. Wu V, Helder MN, Bravenboer N, et al. Bone tissue regeneration in the oral and maxillofacial region: a review on the application of stem cells and new strategies to improve vascularization. Stem Cells Int. 2019;2019:6279721. https://doi.org/10.1155/2019/6279721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lane JM, Tomin E, Bostrom MPG. Biosynthetic bone grafting. Clin Orthop Relat Res. 1999;367:S107–17. https://doi.org/10.1097/00003086-199910001-00011.

    Article  Google Scholar 

  10. Lord CF, Gebhardt MC, Tomford WW, Mankin HJ. Infection in bone allografts. Incidence, nature, and treatment. J Bone Joint Surg Am. 1988;70:369–76.

    Article  CAS  PubMed  Google Scholar 

  11. Tomford WW, Starkweather RJ, Goldman MH. A study of the clinical incidence of infection in the use of banked allograft bone. J Bone Joint Surg Am. 1981;63:244–8.

    Article  CAS  PubMed  Google Scholar 

  12. Greenwald AS, Boden SD, Goldberg VM, et al. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am. 2001;83-A(Suppl):98–103. https://doi.org/10.2106/00004623-200100022-00007.

    Article  Google Scholar 

  13. Goh BT, Teh LY, Tan DBP, et al. Novel 3D polycaprolactone scaffold for ridge preservation—a pilot randomised controlled clinical trial. Clin Oral Implants Res. 2015;26:271–7. https://doi.org/10.1111/clr.12486.

    Article  PubMed  Google Scholar 

  14. Milovanovic JR, Stojkovic MS, Husain KN, et al. Holistic approach in designing the personalized bone scaffold: the case of reconstruction of large missing piece of mandible caused by congenital anatomic anomaly. J Healthc Eng. 2020;2020:6689961. https://doi.org/10.1155/2020/6689961.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mangano FG, Zecca PA, van Noort R, et al. Custom-made computer-aided-design/computer-aided-manufacturing biphasic calcium-phosphate scaffold for augmentation of an atrophic mandibular anterior ridge. Case Rep Dent. 2015;2015:941265. https://doi.org/10.1155/2015/941265.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Laurencin C, Khan Y, El-Amin SF. Bone graft substitutes. Expert Rev Med Devices. 2006;3:49–57. https://doi.org/10.1586/17434440.3.1.49.

    Article  CAS  PubMed  Google Scholar 

  17. Laurencin CT, Ambrosio AM, Borden MD, Cooper JAJ. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng. 1999;1:19–46. https://doi.org/10.1146/annurev.bioeng.1.1.19.

    Article  CAS  PubMed  Google Scholar 

  18. Melek LN. Tissue engineering in oral and maxillofacial reconstruction. Tanta Dent J. 2015;12:211–23. https://doi.org/10.1016/j.tdj.2015.05.003.

    Article  Google Scholar 

  19. Costello BJ, Shah G, Kumta P, Sfeir CS. Regenerative medicine for craniomaxillofacial surgery. Oral Maxillofac Surg Clin North Am. 2010;22:33–42. https://doi.org/10.1016/j.coms.2009.10.009.

    Article  PubMed  Google Scholar 

  20. Akter F, Ibanez J. Chapter 8—bone and cartilage tissue engineering. In: Akter F, editor. Tissue engineering made easy. Cambridge: Academic Press; 2016. p. 77–97.

    Chapter  Google Scholar 

  21. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85. https://doi.org/10.1038/nbt.2958.

    Article  CAS  PubMed  Google Scholar 

  22. Obregon F, Vaquette C, Ivanovski S, et al. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res. 2015;94:143S–52S. https://doi.org/10.1177/0022034515588885.

    Article  CAS  PubMed  Google Scholar 

  23. Habibovic P, Gbureck U, Doillon CJ, et al. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials. 2008;29:944–53. https://doi.org/10.1016/j.biomaterials.2007.10.023.

    Article  CAS  PubMed  Google Scholar 

  24. Jones AC, Arns CH, Sheppard AP, et al. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28:2491–504. https://doi.org/10.1016/j.biomaterials.2007.01.046.

    Article  CAS  PubMed  Google Scholar 

  25. Adamzyk C, Kachel P, Hoss M, et al. Bone tissue engineering using polyetherketoneketone scaffolds combined with autologous mesenchymal stem cells in a sheep calvarial defect model. J Craniomaxillofac Surg. 2016;44:985–94. https://doi.org/10.1016/j.jcms.2016.04.012.

    Article  PubMed  Google Scholar 

  26. Carrel J-P, Wiskott A, Scherrer S, Durual S. Large bone vertical augmentation using a three-dimensional printed TCP/HA bone graft: a pilot study in dog mandible. Clin Implant Dent Relat Res. 2016;18:1183–92. https://doi.org/10.1111/cid.12394.

    Article  PubMed  Google Scholar 

  27. Haberstroh K, Ritter K, Kuschnierz J, et al. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects. J Biomed Mater Res B Appl Biomater. 2010;93:520–30. https://doi.org/10.1002/jbm.b.31611.

    Article  CAS  PubMed  Google Scholar 

  28. Jensen J, Rölfing JHD, Le DQS, et al. Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments. J Biomed Mater Res A. 2014;102:2993–3003. https://doi.org/10.1002/jbm.a.34970.

    Article  CAS  PubMed  Google Scholar 

  29. Murphy CM, O’Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr. 2010;4:377–81. https://doi.org/10.4161/cam.4.3.11747.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mour M, Das D, Winkler T, et al. Advances in porous biomaterials for dental and orthopaedic applications. Dent Mater. 2010;3:2947.

    CAS  Google Scholar 

  31. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91. https://doi.org/10.1016/j.biomaterials.2005.02.002.

    Article  CAS  PubMed  Google Scholar 

  32. Kim J-A, Lim J, Naren R, et al. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Acta Biomater. 2016;44:155–67. https://doi.org/10.1016/j.actbio.2016.08.039.

    Article  CAS  PubMed  Google Scholar 

  33. Otsuki B, Takemoto M, Fujibayashi S, et al. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006;27:5892–900. https://doi.org/10.1016/j.biomaterials.2006.08.013.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao S, Zhang J, Zhu M, et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomater. 2015;12:270–80. https://doi.org/10.1016/j.actbio.2014.10.015.

    Article  CAS  PubMed  Google Scholar 

  35. Roskies MG, Fang D, Abdallah M-N, et al. Three-dimensionally printed polyetherketoneketone scaffolds with mesenchymal stem cells for the reconstruction of critical-sized mandibular defects. Laryngoscope. 2017;127:E392–8. https://doi.org/10.1002/lary.26781.

    Article  CAS  PubMed  Google Scholar 

  36. Shao H, Sun M, Zhang F, et al. Custom repair of mandibular bone defects with 3D printed bioceramic scaffolds. J Dent Res. 2017;97:68–76. https://doi.org/10.1177/0022034517734846.

    Article  CAS  PubMed  Google Scholar 

  37. Maroulakos M, Kamperos G, Tayebi L, et al. Applications of 3D printing on craniofacial bone repair: a systematic review. J Dent. 2019;80:1–14. https://doi.org/10.1016/j.jdent.2018.11.004.

    Article  PubMed  Google Scholar 

  38. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24. https://doi.org/10.1038/nmat1421.

    Article  CAS  PubMed  Google Scholar 

  39. Bruyas A, Lou F, Stahl AM, et al. Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity. J Mater Res. 2018;33:1948–59. https://doi.org/10.1557/jmr.2018.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abarrategi A, Moreno-Vicente C, Martínez-Vázquez FJ, et al. Biological properties of solid free form designed ceramic scaffolds with BMP-2: in vitro and in vivo evaluation. PloS One. 2012;7:e34117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ciocca L, Lesci IG, Mezini O, et al. Customized hybrid biomimetic hydroxyapatite scaffold for bone tissue regeneration. J Biomed Mater Res B Appl Biomater. 2017;105:723–34. https://doi.org/10.1002/jbm.b.33597.

    Article  CAS  PubMed  Google Scholar 

  42. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40:363–408. https://doi.org/10.1615/critrevbiomedeng.v40.i5.10.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004;32:477–86. https://doi.org/10.1023/B:ABME.0000017544.36001.8e.

    Article  PubMed  Google Scholar 

  44. Ge Z, Tian X, Heng BC, et al. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model. Biomed Mater. 2009;4:21001. https://doi.org/10.1088/1748-6041/4/2/021001.

    Article  CAS  Google Scholar 

  45. Keriquel V, Guillemot F, Arnault I, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2:14101. https://doi.org/10.1088/1758-5082/2/1/014101.

    Article  CAS  Google Scholar 

  46. Pati F, Song T-H, Rijal G, et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials. 2015;37:230–41. https://doi.org/10.1016/j.biomaterials.2014.10.012.

    Article  CAS  PubMed  Google Scholar 

  47. Shim J-H, Yoon M-C, Jeong C-M, et al. Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit. Biomed Mater. 2014;9:65006. https://doi.org/10.1088/1748-6041/9/6/065006.

    Article  CAS  Google Scholar 

  48. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101:1869–79. https://doi.org/10.1021/cr000108x.

    Article  CAS  PubMed  Google Scholar 

  49. Mangano C, Giuliani A, De Tullio I, et al. Case report: histological and histomorphometrical results of a 3-D printed biphasic calcium phosphate ceramic 7 years after insertion in a human maxillary alveolar ridge. Front Bioeng Biotechnol. 2021;9:614325. https://doi.org/10.3389/fbioe.2021.614325.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ishack S, Mediero A, Wilder T, et al. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. J Biomed Mater Res B Appl Biomater. 2017;105:366–75. https://doi.org/10.1002/jbm.b.33561.

    Article  CAS  PubMed  Google Scholar 

  51. Smeets R, Barbeck M, Hanken H, et al. Selective laser-melted fully biodegradable scaffold composed of poly(d,l-lactide) and β-tricalcium phosphate with potential as a biodegradable implant for complex maxillofacial reconstruction: in vitro and in vivo results. J Biomed Mater Res B Appl Biomater. 2017;105:1216–31. https://doi.org/10.1002/jbm.b.33660.

    Article  CAS  PubMed  Google Scholar 

  52. Khojasteh A, Morad G, Behnia H. Clinical importance of recipient site characteristics for vertical ridge augmentation: a systematic review of literature and proposal of a classification. J Oral Implantol. 2013;39:386–98. https://doi.org/10.1563/AAID-JOI-D-11-00210.

    Article  PubMed  Google Scholar 

  53. Sakka S, Coulthard P. Bone quality: a reality for the process of osseointegration. Implant Dent. 2009;18:480–5. https://doi.org/10.1097/ID.0b013e3181bb840d.

    Article  PubMed  Google Scholar 

  54. Mangano F, Zecca P, Pozzi-Taubert S, et al. Maxillary sinus augmentation using computer-aided design/computer-aided manufacturing (CAD/CAM) technology. Int J Med Robot. 2013;9:331–8. https://doi.org/10.1002/rcs.1460.

    Article  CAS  PubMed  Google Scholar 

  55. Figliuzzi M, Mangano FG, Fortunato L, et al. Vertical ridge augmentation of the atrophic posterior mandible with custom-made, computer-aided design/computer-aided manufacturing porous hydroxyapatite scaffolds. J Craniofac Surg. 2013;24:856–9. https://doi.org/10.1097/SCS.0b013e31827ca3a7.

    Article  PubMed  Google Scholar 

  56. Luongo F, Mangano FG, Macchi A, et al. Custom-made synthetic scaffolds for bone reconstruction: a retrospective, multicenter clinical study on 15 patients. Biomed Res Int. 2016;2016:1. https://doi.org/10.1155/2016/5862586.

    Article  CAS  Google Scholar 

  57. Mangano F, Macchi A, Shibli JA, et al. Maxillary ridge augmentation with custom-made CAD/CAM scaffolds. A 1-year prospective study on 10 patients. J Oral Implantol. 2014;40:561–9. https://doi.org/10.1563/AAID-JOI-D-12-00122.

    Article  PubMed  Google Scholar 

  58. Probst FA, Fliefel R, Burian E, et al. Bone regeneration of minipig mandibular defect by adipose derived mesenchymal stem cells seeded tri-calcium phosphate- poly(D,L-lactide-co-glycolide) scaffolds. Sci Rep. 2020;10:2062. https://doi.org/10.1038/s41598-020-59038-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang C, Yan B, Cui Z, et al. Bone regeneration in minipigs by intrafibrillarly-mineralized collagen loaded with autologous periodontal ligament stem cells. Sci Rep. 2017;7:10519. https://doi.org/10.1038/s41598-017-11155-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin C-Y, Wang Y-H, Li K-C, et al. Healing of massive segmental femoral bone defects in minipigs by allogenic ASCs engineered with FLPo/Frt-based baculovirus vectors. Biomaterials. 2015;50:98–106. https://doi.org/10.1016/j.biomaterials.2015.01.052.

    Article  CAS  PubMed  Google Scholar 

  61. Cao Y, Xiong J, Mei S, et al. Aspirin promotes bone marrow mesenchymal stem cell-based calvarial bone regeneration in mini swine. Stem Cell Res Ther. 2015;6:210. https://doi.org/10.1186/s13287-015-0200-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim E-S, Kim J-J, Park E-J. Angiogenic factor-enriched platelet-rich plasma enhances in vivo bone formation around alloplastic graft material. J Adv Prosthodont. 2010;2:7–13. https://doi.org/10.4047/jap.2010.2.1.7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Polimeni G, Albandar JM, Wikesjö UME. Prognostic factors for alveolar regeneration: osteogenic potential of resident bone. J Clin Periodontol. 2004;31:840–4. https://doi.org/10.1111/j.1600-051x.2004.00575.x.

    Article  PubMed  Google Scholar 

  64. Wang H-L, Boyapati L. “PASS” principles for predictable bone regeneration. Implant Dent. 2006;15:8–17. https://doi.org/10.1097/01.id.0000204762.39826.0f.

    Article  PubMed  Google Scholar 

  65. Smith DM, Cray JJ Jr, Weiss LE, et al. Precise control of osteogenesis for craniofacial defect repair: the role of direct osteoprogenitor contact in BMP-2-based bioprinting. Ann Plast Surg. 2012;69:485–8. https://doi.org/10.1097/SAP.0b013e31824cfe64.

    Article  CAS  PubMed  Google Scholar 

  66. Tamimi F, Torres J, Gbureck U, et al. Craniofacial vertical bone augmentation: a comparison between 3D printed monolithic monetite blocks and autologous onlay grafts in the rabbit. Biomaterials. 2009;30:6318–26. https://doi.org/10.1016/j.biomaterials.2009.07.049.

    Article  CAS  PubMed  Google Scholar 

  67. Sathyendra V, Darowish M. Basic science of bone healing. Hand Clin. 2013;29:473–81. https://doi.org/10.1016/j.hcl.2013.08.002.

    Article  PubMed  Google Scholar 

  68. le Noble F, le Noble J. Vessels of rejuvenation. Nature. 2014;507:313–4. https://doi.org/10.1038/nature13210.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang J, Pan J, Jing W. Motivating role of type H vessels in bone regeneration. Cell Prolif. 2020;53:e12874. https://doi.org/10.1111/cpr.12874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fu C, Luo D, Yu M, et al. Embryonic-like mineralized extracellular matrix/stem cell microspheroids as a bone graft substitute. Adv Healthc Mater. 2018;7:e1800705. https://doi.org/10.1002/adhm.201800705.

    Article  CAS  PubMed  Google Scholar 

  71. Percival CJ, Richtsmeier JT. Angiogenesis and intramembranous osteogenesis. Dev Dyn. 2013;242:909–22. https://doi.org/10.1002/dvdy.23992.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Einhorn TA, Lee CA. Bone regeneration: new findings and potential clinical applications. J Am Acad Orthop Surg. 2001;9:157–65. https://doi.org/10.5435/00124635-200105000-00002.

    Article  CAS  PubMed  Google Scholar 

  73. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307. https://doi.org/10.1038/nature10144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med. 2014;18:1491–508. https://doi.org/10.1111/jcmm.12164.

    Article  PubMed  Google Scholar 

  75. Ribatti D, Crivellato E. “Sprouting angiogenesis”, a reappraisal. Dev Biol. 2012;372:157–65. https://doi.org/10.1016/j.ydbio.2012.09.018.

    Article  CAS  PubMed  Google Scholar 

  76. Rücker M, Laschke MW, Junker D, et al. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials. 2006;27:5027–38. https://doi.org/10.1016/j.biomaterials.2006.05.033.

    Article  CAS  PubMed  Google Scholar 

  77. Zarem HA. The microcirculatory events within full-thickness skin allografts (homografts) in mice. Surgery. 1969;66:392–7.

    CAS  PubMed  Google Scholar 

  78. Laschke MW, Menger MD. Vascularization in tissue engineering: angiogenesis versus inosculation. Eur Surg Res. 2012;48:85–92. https://doi.org/10.1159/000336876.

    Article  CAS  PubMed  Google Scholar 

  79. Koike N, Fukumura D, Gralla O, et al. Tissue engineering: creation of long-lasting blood vessels. Nature. 2004;428:138–9. https://doi.org/10.1038/428138a.

    Article  CAS  PubMed  Google Scholar 

  80. Paik KJ, Zielins ER, Atashroo DA, et al. Studies in fat grafting: part V. cell-assisted lipotransfer to enhance fat graft retention is dose dependent. Plast Reconstr Surg. 2015;136:67–75. https://doi.org/10.1097/PRS.0000000000001367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shepherd BR, Chen HYS, Smith CM, et al. Rapid perfusion and network remodeling in a microvascular construct after implantation. Arterioscler Thromb Vasc Biol. 2004;24:898–904. https://doi.org/10.1161/01.ATV.0000124103.86943.1e.

    Article  CAS  PubMed  Google Scholar 

  82. Laschke MW, Kleer S, Scheuer C, et al. Vascularisation of porous scaffolds is improved by incorporation of adipose tissue-derived microvascular fragments. Eur Cell Mater. 2012;24:266–77. https://doi.org/10.22203/ecm.v024a19.

    Article  CAS  PubMed  Google Scholar 

  83. Vezzani B, Shaw I, Lesme H, et al. Higher pericyte content and secretory activity of microfragmented human adipose tissue compared to enzymatically derived stromal vascular fraction. Stem Cells Transl Med. 2018;7:876–86. https://doi.org/10.1002/sctm.18-0051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Buser D, Dula K, Belser UC, et al. Localized ridge augmentation using guided bone regeneration. II. Surgical procedure in the mandible. Int J Periodontics Restorative Dent. 1995;15:10–29.

    CAS  PubMed  Google Scholar 

  85. Giannobile WV, Ryan S, Shih MS, et al. Recombinant human osteogenic protein-1 (OP-1) stimulates periodontal wound healing in class III furcation defects. J Periodontol. 1998;69:129–37. https://doi.org/10.1902/jop.1998.69.2.129.

    Article  CAS  PubMed  Google Scholar 

  86. Fiorellini JP, Buser D, Riley E, Howell TH. Effect on bone healing of bone morphogenetic protein placed in combination with endosseous implants: a pilot study in beagle dogs. Int J Periodontics Restorative Dent. 2001;21:41–7.

    CAS  PubMed  Google Scholar 

  87. Jegoux F, Malard O, Goyenvalle E, et al. Radiation effects on bone healing and reconstruction: interpretation of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:173–84. https://doi.org/10.1016/j.tripleo.2009.10.001.

    Article  PubMed  Google Scholar 

  88. Reuther T, Schuster T, Mende U, Kübler A. Osteoradionecrosis of the jaws as a side effect of radiotherapy of head and neck tumour patients—a report of a thirty year retrospective review. Int J Oral Maxillofac Surg. 2003;32:289–95. https://doi.org/10.1054/ijom.2002.0332.

    Article  CAS  PubMed  Google Scholar 

  89. Hu W-W, Ward BB, Wang Z, Krebsbach PH. Bone regeneration in defects compromised by radiotherapy. J Dent Res. 2010;89:77–81. https://doi.org/10.1177/0022034509352151.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kaigler D, Wang Z, Horger K, et al. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res Off J Am Soc Bone Miner Res. 2006;21:735–44. https://doi.org/10.1359/jbmr.060120.

    Article  CAS  Google Scholar 

  91. Koh JT, Zhao Z, Wang Z, et al. Combinatorial gene therapy with BMP2/7 enhances cranial bone regeneration. J Dent Res. 2008;87:845–9. https://doi.org/10.1177/154405910808700906.

    Article  CAS  PubMed  Google Scholar 

  92. Hu W-W, Lang MW, Krebsbach PH. Development of adenovirus immobilization strategies for in situ gene therapy. J Gene Med. 2008;10:1102–12. https://doi.org/10.1002/jgm.1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bourell D, Kruth JP, Leu M, et al. Materials for additive manufacturing. CIRP Ann. 2017;66:659–81. https://doi.org/10.1016/j.cirp.2017.05.009.

    Article  Google Scholar 

  94. Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018;67:378–92. https://doi.org/10.1016/j.actbio.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  95. Wen P, Jauer L, Voshage M, et al. Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants. J Mater Process Technol. 2018;258:128–37. https://doi.org/10.1016/j.jmatprotec.2018.03.007.

    Article  CAS  Google Scholar 

  96. Hernández-Escobar D, Champagne S, Yilmazer H, et al. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomater. 2019;97:1–22. https://doi.org/10.1016/j.actbio.2019.07.034.

    Article  CAS  PubMed  Google Scholar 

  97. Grasso M, Demir AG, Previtali B, Colosimo BM. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Robot Comput Integr Manuf. 2018;49:229–39. https://doi.org/10.1016/j.rcim.2017.07.001.

    Article  Google Scholar 

  98. Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010;35:403–40. https://doi.org/10.1016/j.progpolymsci.2010.01.006.

    Article  CAS  Google Scholar 

  99. Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3:589–601. https://doi.org/10.1098/rsif.2006.0124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Scaffaro R, Lopresti F, Botta L, et al. Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering. J Mech Behav Biomed Mater. 2016;63:303–13. https://doi.org/10.1016/j.jmbbm.2016.06.021.

    Article  CAS  PubMed  Google Scholar 

  101. Pei B, Wang W, Fan Y, et al. Fiber-reinforced scaffolds in soft tissue engineering. Regen Biomater. 2017;4:257–68. https://doi.org/10.1093/rb/rbx021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nyberg E, Rindone A, Dorafshar A, Grayson WL. Comparison of 3D-printed poly-ɛ-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue Eng Part A. 2016;23:503–14. https://doi.org/10.1089/ten.tea.2016.0418.

    Article  CAS  Google Scholar 

  103. Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact Mater. 2018;3:129–38. https://doi.org/10.1016/j.bioactmat.2017.08.004.

    Article  PubMed  Google Scholar 

  104. Nyberg EL, Farris AL, Hung BP, et al. 3D-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration. Ann Biomed Eng. 2017;45:45–57. https://doi.org/10.1007/s10439-016-1668-5.

    Article  PubMed  Google Scholar 

  105. Huang B, Caetano G, Vyas C, et al. Polymer-ceramic composite scaffolds: the effect of hydroxyapatite and β-tri-calcium phosphate. Materials (Basel). 2018;11:129. https://doi.org/10.3390/ma11010129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Paschalis EP, Recker R, DiCarlo E, et al. Distribution of collagen cross-links in normal human trabecular bone. J Bone Miner Res Off J Am Soc Bone Miner Res. 2003;18:1942–6. https://doi.org/10.1359/jbmr.2003.18.11.1942.

    Article  CAS  Google Scholar 

  107. Jakus AE, Shah RN. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J Biomed Mater Res A. 2017;105:274–83. https://doi.org/10.1002/jbm.a.35684.

    Article  CAS  PubMed  Google Scholar 

  108. Kim J-Y, Ahn G, Kim C, et al. Synergistic effects of beta tri-calcium phosphate and porcine-derived decellularized bone extracellular matrix in 3D-printed polycaprolactone scaffold on bone regeneration. Macromol Biosci. 2018;18:e1800025. https://doi.org/10.1002/mabi.201800025.

    Article  CAS  PubMed  Google Scholar 

  109. Ronca A, Ambrosio L, Grijpma DW. Design of porous three-dimensional PDLLA/nano-hap composite scaffolds using stereolithography. J Appl Biomater Funct Mater. 2012;10:249–58. https://doi.org/10.5301/JABFM.2012.10211.

    Article  CAS  PubMed  Google Scholar 

  110. Gerdes S, Mostafavi A, Ramesh S, et al. Process–structure–quality relationships of three-dimensional printed poly(caprolactone)-hydroxyapatite scaffolds. Tissue Eng Part A. 2020;26:279–91. https://doi.org/10.1089/ten.tea.2019.0237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kwon DY, Park JH, Jang SH, et al. Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect. J Tissue Eng Regen Med. 2018;12:516–28. https://doi.org/10.1002/term.2532.

    Article  CAS  PubMed  Google Scholar 

  112. Park SH, Park SA, Kang YG, et al. PCL/β-TCP composite scaffolds exhibit positive osteogenic differentiation with mechanical stimulation. Tissue Eng Regen Med. 2017;14:349–58. https://doi.org/10.1007/s13770-017-0022-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Distler T, Fournier N, Grünewald A, et al. Polymer-bioactive glass composite filaments for 3D scaffold manufacturing by fused deposition modeling: fabrication and characterization. Front Bioeng Biotechnol. 2020;8:552.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Poh PSP, Hutmacher DW, Stevens MM, Woodruff MA. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration. Biofabrication. 2013;5:45005. https://doi.org/10.1088/1758-5082/5/4/045005.

    Article  CAS  Google Scholar 

  115. Du X, Fu S, Zhu Y. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. J Mater Chem B. 2018;6:4397–412. https://doi.org/10.1039/C8TB00677F.

    Article  CAS  PubMed  Google Scholar 

  116. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14:15–56. https://doi.org/10.1166/jnn.2014.9127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:1217–56. https://doi.org/10.1016/j.progpolymsci.2010.04.002.

    Article  CAS  Google Scholar 

  118. Latimer JM, Maekawa S, Yao Y, et al. Regenerative medicine technologies to treat dental, oral, and craniofacial defects. Front Bioeng Biotechnol. 2021;9:704048. https://doi.org/10.3389/fbioe.2021.704048.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater. 2012;28:113–22. https://doi.org/10.1016/j.dental.2011.09.010.

    Article  CAS  PubMed  Google Scholar 

  120. Grynpas MD, Pilliar RM, Kandel RA, et al. Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies. Biomaterials. 2002;23:2063–70. https://doi.org/10.1016/S0142-9612(01)00336-2.

    Article  CAS  PubMed  Google Scholar 

  121. Alksne M, Kalvaityte M, Simoliunas E, et al. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: insights into materials for bone regeneration. J Mech Behav Biomed Mater. 2020;104:103641. https://doi.org/10.1016/j.jmbbm.2020.103641.

    Article  CAS  PubMed  Google Scholar 

  122. Abdal-hay A, Abbasi N, Gwiazda M, et al. Novel polycaprolactone/hydroxyapatite nanocomposite fibrous scaffolds by direct melt-electrospinning writing. Eur Polym J. 2018;105:257–64. https://doi.org/10.1016/j.eurpolymj.2018.05.034.

    Article  CAS  Google Scholar 

  123. Shanjani Y, Kang Y, Zarnescu L, et al. Endothelial pattern formation in hybrid constructs of additive manufactured porous rigid scaffolds and cell-laden hydrogels for orthopedic applications. J Mech Behav Biomed Mater. 2017;65:356–72. https://doi.org/10.1016/j.jmbbm.2016.08.037.

    Article  CAS  PubMed  Google Scholar 

  124. Gendviliene I, Simoliunas E, Rekstyte S, et al. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds. J Mech Behav Biomed Mater. 2020;104:103616. https://doi.org/10.1016/j.jmbbm.2020.103616.

    Article  CAS  PubMed  Google Scholar 

  125. Bagheri Saed A, Behravesh AH, Hasannia S, et al. An in vitro study on the key features of poly L-lactic acid/biphasic calcium phosphate scaffolds fabricated via DLP 3D printing for bone grafting. Eur Polym J. 2020;141:110057. https://doi.org/10.1016/j.eurpolymj.2020.110057.

    Article  CAS  Google Scholar 

  126. Liu L, Xiong Z, Yan Y, et al. Porous morphology, porosity, mechanical properties of poly(alpha-hydroxy acid)-tricalcium phosphate composite scaffolds fabricated by low-temperature deposition. J Biomed Mater Res A. 2007;82:618–29. https://doi.org/10.1002/jbm.a.31177.

    Article  CAS  PubMed  Google Scholar 

  127. Kim BS, Jang J, Chae S, et al. Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers. Biofabrication. 2016;8:35013. https://doi.org/10.1088/1758-5090/8/3/035013.

    Article  CAS  Google Scholar 

  128. Babilotte J, Martin B, Guduric V, et al. Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering. Mater Sci Eng C. 2021;118:111334. https://doi.org/10.1016/j.msec.2020.111334.

    Article  CAS  Google Scholar 

  129. Li Z, Ramay HR, Hauch KD, et al. Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26:3919–28. https://doi.org/10.1016/j.biomaterials.2004.09.062.

    Article  CAS  PubMed  Google Scholar 

  130. Marijnissen WJCM, van Osch GJVM, Aigner J, et al. Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials. 2002;23:1511–7. https://doi.org/10.1016/S0142-9612(01)00281-2.

    Article  CAS  PubMed  Google Scholar 

  131. Park H, Lee KY. Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels. J Biomed Mater Res A. 2014;102:4519–25. https://doi.org/10.1002/jbm.a.35126.

    Article  CAS  PubMed  Google Scholar 

  132. Zhu Y, Liao L. Applications of nanoparticles for anticancer drug delivery: a review. J Nanosci Nanotechnol. 2015;15:4753–73. https://doi.org/10.1166/jnn.2015.10298.

    Article  CAS  PubMed  Google Scholar 

  133. Van der Schueren L, Steyaert I, De Schoenmaker B, De Clerck K. Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydr Polym. 2012;88:1221–6. https://doi.org/10.1016/j.carbpol.2012.01.085.

    Article  CAS  Google Scholar 

  134. Zhang Y, Zhang W, Fedutik Y, et al. Nanodiamonds of different surface chemistry influence the toxicity and differentiation of rat bone mesenchymal stem cells in vitro. J Nanosci Nanotechnol. 2019;19:5426–34. https://doi.org/10.1166/jnn.2019.16545.

    Article  CAS  PubMed  Google Scholar 

  135. Shalumon KT, Anulekha KH, Girish CM, et al. Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr Polym. 2010;80:413–9. https://doi.org/10.1016/j.carbpol.2009.11.039.

    Article  CAS  Google Scholar 

  136. Zo S, Choi S, Kim H, et al. Synthesis and characterization of carboxymethyl chitosan scaffolds grafted with waterborne polyurethane. J Nanosci Nanotechnol. 2020;20:5014–8. https://doi.org/10.1166/jnn.2020.17844.

    Article  PubMed  Google Scholar 

  137. LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108:4742–53. https://doi.org/10.1021/cr800427g.

    Article  CAS  PubMed  Google Scholar 

  138. Hench LL. Bioceramics and the origin of life. J Biomed Mater Res. 1989;23:685–703. https://doi.org/10.1002/jbm.820230703.

    Article  CAS  PubMed  Google Scholar 

  139. Oonishi H. Orthopaedic applications of hydroxyapatite. Biomaterials. 1991;12:171–8. https://doi.org/10.1016/0142-9612(91)90196-H.

    Article  CAS  PubMed  Google Scholar 

  140. Leukers B, Gülkan H, Irsen SH, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med. 2005;16:1121–4. https://doi.org/10.1007/s10856-005-4716-5.

    Article  CAS  PubMed  Google Scholar 

  141. Wheeler DL, Stokes KE, Park HM, Hollinger JO. Evaluation of particulate bioglass in a rabbit radius ostectomy model. J Biomed Mater Res. 1997;35:249–54. https://doi.org/10.1002/(sici)1097-4636(199705)35:2<249::aid-jbm12>3.0.co;2-c.

    Article  CAS  PubMed  Google Scholar 

  142. Sumida T, Otawa N, Kamata YU, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh. J Craniomaxillofac Surg. 2015;43:2183–8. https://doi.org/10.1016/j.jcms.2015.10.020.

    Article  PubMed  Google Scholar 

  143. Fahmy MD, Jazayeri HE, Razavi M, et al. Three-dimensional bioprinting materials with potential application in preprosthetic surgery. J Prosthodont. 2016;25:310–8. https://doi.org/10.1111/jopr.12431.

    Article  PubMed  Google Scholar 

  144. Shaunak S, Dhinsa SB, Khan SW. The role of 3D modelling and printing in orthopaedic tissue engineering: a review of the current literature. Curr Stem Cell Res Ther. 2017;12:225–32.

    Article  CAS  PubMed  Google Scholar 

  145. Zhu M, Zhang J, Zhao S, Zhu Y. Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair. J Mater Sci. 2016;51:836–44. https://doi.org/10.1007/s10853-015-9406-1.

    Article  CAS  Google Scholar 

  146. Temple JP, Hutton DL, Hung BP, et al. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res A. 2014;102:4317–25. https://doi.org/10.1002/jbm.a.35107.

    Article  CAS  PubMed  Google Scholar 

  147. Kawai T, Shanjani Y, Fazeli S, et al. Customized, degradable, functionally graded scaffold for potential treatment of early stage osteonecrosis of the femoral head. J Orthop Res. 2018;36:1002–11. https://doi.org/10.1002/jor.23673.

    Article  CAS  PubMed  Google Scholar 

  148. Singh S, Ramakrishna S. Biomedical applications of additive manufacturing: present and future. Curr Opin Biomed Eng. 2017;2:105–15. https://doi.org/10.1016/j.cobme.2017.05.006.

    Article  Google Scholar 

  149. Elomaa L, Yang YP. Additive manufacturing of vascular grafts and vascularized tissue constructs. Tissue Eng Part B Rev. 2017;23:436–50. https://doi.org/10.1089/ten.TEB.2016.0348.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. J Funct Biomater. 2018;9:17.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomater. 2018;79:37–59. https://doi.org/10.1016/j.actbio.2018.08.026.

    Article  CAS  PubMed  Google Scholar 

  152. Anitua E, Tejero R, Zalduendo MM, Orive G. Plasma rich in growth factors promotes bone tissue regeneration by stimulating proliferation, migration, and autocrine secretion in primary human osteoblasts. J Periodontol. 2013;84:1180–90. https://doi.org/10.1902/jop.2012.120292.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazrati, P., Khojasteh, A. (2023). Functional Bone Regeneration in Oral and Maxillofacial Surgery: History, Definition, and Indications. In: Khojasteh, A., Ayoub, A.F., Nadjmi, N. (eds) Emerging Technologies in Oral and Maxillofacial Surgery . Springer, Singapore. https://doi.org/10.1007/978-981-19-8602-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8602-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8601-7

  • Online ISBN: 978-981-19-8602-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics