Skip to main content

Classification of Cutting-Edge Additive Manufacturing Techniques

  • Chapter
  • First Online:
Emerging Technologies in Oral and Maxillofacial Surgery

Abstract

Cutting edge three-dimensional fabrication methods, being dissected into two major classifications of extrusion- and fusion-based technologies, allow production of predefined configurations with specific porosity and pore size. Extrusion-based techniques include inkjet and fused deposition molding, while fusion-based techniques include stereolithography, selective laser sintering, and selective laser melting methods. For each cutting-edge technique, the technical description, commonly utilized materials, and clinical applications are within the scope of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dolinski ND, Page ZA, Callaway EB, Eisenreich F, Garcia RV, Chavez R, et al. Solution mask liquid lithography (SMaLL) for one-step, multimaterial 3D printing. Adv Mater. 2018;30(31):e1800364.

    Article  PubMed  Google Scholar 

  2. Yin H, Ding Y, Zhai Y, Tan W, Yin X. Orthogonal programming of heterogeneous micro-mechano-environments and geometries in three-dimensional bio-stereolithography. Nat Commun. 2018;9(1):4096.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huang Y, Leu MC, Mazumder J, Donmez A. Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng. 2015;137(1):1–5.

    Article  CAS  Google Scholar 

  4. Calore AR, Sinha R, Harings J, Bernaerts KV, Mota C, Moroni L. Additive manufacturing using melt extruded thermoplastics for tissue engineering. Computer-aided tissue engineering. Cham: Springer; 2021. p. 75–99.

    Google Scholar 

  5. Willson K, Ke D, Kengla C, Atala A, Murphy SV. Extrusion-based bioprinting: current standards and relevancy for human-sized tissue fabrication. 3D Bioprinting. Cham: Springer; 2020. p. 65–92.

    Google Scholar 

  6. Nyberg EL, Farris AL, Hung BP, Dias M, Garcia JR, Dorafshar AH, et al. 3D-printing Technologies for Craniofacial Rehabilitation, reconstruction, and regeneration. Ann Biomed Eng. 2017;45(1):45–57.

    Article  PubMed  Google Scholar 

  7. Haeri Boroojeni HS, Mohaghegh S, Khojasteh A. Application of CAD-CAM Technologies for maxillofacial bone regeneration: a narrative review of the clinical studies. Curr Stem Cell Res Ther. 2022.

    Google Scholar 

  8. Viera Rey DF, St-Pierre J-P. Fabrication techniques of tissue engineering scaffolds. In: Mozafari M, Sefat F, Atala A, editors. Handbook of tissue engineering scaffolds: volume one. Sawston: Woodhead Publishing; 2019. p. 109–25.

    Chapter  Google Scholar 

  9. Wang F, Shor L, Darling A, Khalil S, Sun W, Güçeri S, et al. Precision extruding deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds. Rapid Prototyp J. 2004;10(1):42–9.

    Article  Google Scholar 

  10. Montero J, Becerro A, Pardal-Peláez B, Quispe-López N, Blanco JF, Gómez-Polo C. Main 3D manufacturing techniques for customized bone substitutes. A systematic review. Materials. 2021;14(10):2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu F, Wang X. Synthetic polymers for organ 3D printing. Polymers (Basel). 2020;12(8):1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou C, Yang K, Wang K, Pei X, Dong Z, Hong Y, et al. Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds. Mater Des. 2016;109:415–24.

    Article  Google Scholar 

  13. Bártolo PJ, Almeida HA, Rezende RA, Laoui T, Bidanda B. Advanced processes to fabricate scaffolds for tissue engineering. In: Bidanda B, Bártolo P, editors. Virtual prototyping & bio Manufacturing in medical applications. Boston, MA: Springer; 2008. p. 149–70.

    Chapter  Google Scholar 

  14. van Noort R. The future of dental devices is digital. Dent Mat. 2012;28(1):3–12.

    Article  Google Scholar 

  15. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater. 2003;5:29–39,discussion, 40

    Article  CAS  PubMed  Google Scholar 

  16. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 2001;55(2):203–16.

    Article  CAS  PubMed  Google Scholar 

  17. Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Polymer-based scaffolds for soft-tissue engineering. Polymers (Basel). 2020;12(7):1566.

    Article  CAS  PubMed  Google Scholar 

  18. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang Y, Wang G, Liang H, Gao C, Peng S, Shen L, et al. Additive manufacturing of bone scaffolds. Int J Bioprinting. 2018;5(1):148.

    Article  Google Scholar 

  20. Goh BT, Teh LY, Tan DB, Zhang Z, Teoh SH. Novel 3D polycaprolactone scaffold for ridge preservation—a pilot randomised controlled clinical trial. Clin Oral Implants Res. 2015;26(3):271–7.

    Article  PubMed  Google Scholar 

  21. Probst FA, Hutmacher DW, Müller DF, Machens HG, Schantz JT. Calvarial reconstruction by customized bioactive implant. Handchir Mikrochir Plast Chir. 2010;42(6):369–73.

    Article  CAS  PubMed  Google Scholar 

  22. Han HH, Shim J-H, Lee H, Kim BY, Lee J-S, Jung JW, et al. Reconstruction of complex maxillary defects using patient-specific 3D-printed biodegradable scaffolds. Plast Reconstr Surg Glob Open. 2018;6(11):e1975.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Flores RL, Liss H, Raffaelli S, Humayun A, Khouri KS, Coelho PG, et al. The technique for 3D printing patient-specific models for auricular reconstruction. J Craniomaxillofac Surg. 2017;45(6):937–43.

    Article  PubMed  Google Scholar 

  24. Lethaus B, Poort L, Böckmann R, Smeets R, Tolba R, Kessler P. Additive manufacturing for microvascular reconstruction of the mandible in 20 patients. J Craniomaxillofac Surg. 2012;40(1):43–6.

    Article  PubMed  Google Scholar 

  25. Meglioli M, Naveau A, Macaluso GM, Catros S. 3D printed bone models in oral and cranio-maxillofacial surgery: a systematic review. 3D Print Med. 2020;6(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liang K, Carmone S, Brambilla D, Leroux J-C. 3D printing of a wearable personalized oral delivery device: a first-in-human study. Sci Adv. 2018;4(5):eaat2544.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dabadi S, Dhungel RR, Sharma U, Shrestha D, Gurung P, Shrestha R, et al. Customized cost-effective polymethyl-methacrylate cranioplasty implant using three-dimensional printer. Asian J Neurosurg. 2021;16(1):150–4.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim B-J, Hong K-S, Park K-J, Park D-H, Chung Y-G, Kang S-H. Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting. J Korean Neurosurg Soc. 2012;52(6):541–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rotaru H, Stan H, Florian IS, Schumacher R, Park YT, Kim SG, et al. Cranioplasty with custom-made implants: analyzing the cases of 10 patients. J Oral Maxillofac Surg. 2012;70(2):e169–76.

    Article  PubMed  Google Scholar 

  30. Morales-Gómez JA, Garcia-Estrada E, Leos-Bortoni JE, Delgado-Brito M, Flores-Huerta LE, De La Cruz-Arriaga AA, et al. Cranioplasty with a low-cost customized polymethylmethacrylate implant using a desktop 3D printer. J Neurosurg. 2019;130(5):1721–7.

    Article  Google Scholar 

  31. Chamo D, Msallem B, Sharma N, Aghlmandi S, Kunz C, Thieringer FM. Accuracy assessment of molded, patient-specific polymethylmethacrylate craniofacial implants compared to their 3D printed originals. J Clin Med. 2020;9(3):832.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kang J, Wang L, Yang C, Wang L, Yi C, He J, et al. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomech Model Mechanobiol. 2018;17(4):1083–92.

    Article  PubMed  Google Scholar 

  33. Xiong Z, Yan Y, Wang S, Zhang R, Zhang C. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater. 2002;46(11):771–6.

    Article  CAS  Google Scholar 

  34. Liu W, Wang D, Huang J, Wei Y, Xiong J, Zhu W, et al. Low-temperature deposition manufacturing: a novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 2):976–82.

    Article  CAS  PubMed  Google Scholar 

  35. Liu L, Xiong Z, Zhang R, Jin L, Yan Y. A novel osteochondral scaffold fabricated via multi-nozzle low-temperature deposition manufacturing. J Bioact Compat Polym. 2009;24(1_suppl):18–30.

    Article  Google Scholar 

  36. Wang X, Rijff BL, Khang G. A building-block approach to 3D printing a multichannel, organ-regenerative scaffold. J Tissue Eng Regen Med. 2017;11(5):1403–11.

    Article  CAS  PubMed  Google Scholar 

  37. Boyle BM, Xiong PT, Mensch TE, Werder TJ, Miyake GM. 3D printing using powder melt extrusion. Addit Manuf. 2019;29:100811.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Goyanes A, Allahham N, Trenfield SJ, Stoyanov E, Gaisford S, Basit AW. Direct powder extrusion 3D printing: fabrication of drug products using a novel single-step process. Int J Pharm. 2019;567:118471.

    Article  CAS  PubMed  Google Scholar 

  39. Puppi D, Piras AM, Pirosa A, Sandreschi S, Chiellini F. Levofloxacin-loaded star poly (ε-caprolactone) scaffolds by additive manufacturing. J Mater Sci Mater Med. 2016;27(3):44.

    Article  PubMed  Google Scholar 

  40. Puppi D, Chiellini F. Wet-spinning of biomedical polymers: from single-fibre production to additive manufacturing of three-dimensional scaffolds. Polym Int. 2017;66(12):1690–6.

    Article  CAS  Google Scholar 

  41. Puppi D, Mota C, Gazzarri M, Dinucci D, Gloria A, Myrzabekova M, et al. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Biomed Microdevices. 2012;14(6):1115–27.

    Article  CAS  PubMed  Google Scholar 

  42. Tuzlakoglu K, Reis R. Chitosan-based scaffolds in orthopedic applications. In: Natural-based polymers for biomedical applications. Amsterdam: Elsevier; 2008. p. 357–73.

    Chapter  Google Scholar 

  43. Puppi D, Zhang X, Yang L, Chiellini F, Sun X, Chiellini E. Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: a review. J Biomed Mater Res B Appl Biomater. 2014;102(7):1562–79.

    Article  PubMed  Google Scholar 

  44. Puppi D, Dinucci D, Bartoli C, Mota C, Migone C, Dini F, et al. Development of 3D wet-spun polymeric scaffolds loaded with antimicrobial agents for bone engineering. J Bioact Compat Polym. 2011;26(5):478–92.

    Article  CAS  Google Scholar 

  45. Puppi D, Piras AM, Chiellini F, Chiellini E, Martins A, Leonor IB, et al. Optimized electro-and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. J Tissue Eng Regen Med. 2011;5(4):253–63.

    Article  CAS  PubMed  Google Scholar 

  46. Tuzlakoglu K, Alves CM, Mano JF, Reis RL. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications. Macromol Biosci. 2004;4(8):811–9.

    Article  CAS  PubMed  Google Scholar 

  47. Tuzlakoglu K, Pashkuleva I, Rodrigues MT, Gomes ME, van Lenthe GH, Müller R, et al. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation. J Biomed Mater Res. 2010;92(1):369–77.

    Article  CAS  Google Scholar 

  48. Pashkuleva I, López-Pérez PM, Azevedo HS, Reis RL. Highly porous and interconnected starch-based scaffolds: production, characterization and surface modification. Mater Sci Eng C. 2010;30(7):981–9.

    Article  CAS  Google Scholar 

  49. Mathiowitz E, Lavin DM, Hopkins RA. Wet spun microfibers: potential in the design of controlled-release scaffolds? Ther Deliv. 2013;4(9):1075–7.

    Article  CAS  PubMed  Google Scholar 

  50. Hirano S, Zhang M, Nakagawa M. Release of glycosaminoglycans in physiological saline and water by wet-spun chitin–acid glycosaminoglycan fibers. J Biomed Mater Res. 2001;56(4):556–61.

    Article  CAS  PubMed  Google Scholar 

  51. Denkbaş E, Seyyal M, Pişkin E. Implantable 5-fluorouracil loaded chitosan scaffolds prepared by wet spinning. J Membr Sci. 2000;172(1–2):33–8.

    Article  Google Scholar 

  52. Ucar S, Yilgor P, Hasirci V, Hasirci N. Chitosan-based wet-spun scaffolds for bioactive agent delivery. J Appl Polym Sci. 2013;130(5):3759–69.

    Article  CAS  Google Scholar 

  53. Nie H-L, Ma Z-H, Fan Z-X, Branford-White CJ, Ning X, Zhu L-M, et al. Polyacrylonitrile fibers efficiently loaded with tamoxifen citrate using wet-spinning from co-dissolving solution. Int J Pharm. 2009;373(1–2):4–9.

    Article  CAS  PubMed  Google Scholar 

  54. Rissanen M, Puolakka A, Ahola N, Tonry A, Rochev Y, Kellomäki M, et al. Effect of protein-loading on properties of wet-spun poly (l, d-lactide) multifilament fibers. J Appl Polym Sci. 2010;116(4):2174–80.

    CAS  Google Scholar 

  55. Jung M-R, Shim I-K, Kim E-S, Park Y-J, Yang Y-I, Lee S-K, et al. Controlled release of cell-permeable gene complex from poly (L-lactide) scaffold for enhanced stem cell tissue engineering. J Control Release. 2011;152(2):294–302.

    Article  CAS  PubMed  Google Scholar 

  56. Lavin DM, Stefani RM, Zhang L, Furtado S, Hopkins RA, Mathiowitz E. Multifunctional polymeric microfibers with prolonged drug delivery and structural support capabilities. Acta Biomater. 2012;8(5):1891–900.

    Article  CAS  PubMed  Google Scholar 

  57. Lavin DM, Zhang L, Furtado S, Hopkins RA, Mathiowitz E. Effects of protein molecular weight on the intrinsic material properties and release kinetics of wet spun polymeric microfiber delivery systems. Acta Biomater. 2013;9(1):4569–78.

    Article  CAS  PubMed  Google Scholar 

  58. Hirano S. Wet-spinning and applications of functional fibers based on chitin and chitosan. In: Macromolecular symposia. Hoboken, NJ: Wiley; 2001.

    Google Scholar 

  59. Puppi D, Pirosa A, Lupi G, Erba PA, Giachi G, Chiellini F. Design and fabrication of novel polymeric biodegradable stents for small caliber blood vessels by computer-aided wet-spinning. Biomed Mater. 2017;12(3):035011.

    Article  CAS  PubMed  Google Scholar 

  60. Puppi D, Morelli A, Bello F, Valentini S, Chiellini F. Additive manufacturing of poly (methyl methacrylate) biomedical implants with dual-scale porosity. Macromol Mater Eng. 2018;303(9):1800247.

    Article  Google Scholar 

  61. Puppi D, Morelli A, Chiellini F. Additive manufacturing of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly (ε-caprolactone) blend scaffolds for tissue engineering. Bioengineering. 2017;4(2):49.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mota C, Puppi D, Dinucci D, Gazzarri M, Chiellini F. Additive manufacturing of star poly (ε-caprolactone) wet-spun scaffolds for bone tissue engineering applications. J Bioact Compat Polym. 2013;28(4):320–40.

    Article  CAS  Google Scholar 

  63. Neves SC, Mota C, Longoni A, Barrias CC, Granja PL, Moroni L. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity. Biofabrication. 2016;8(2):025012.

    Article  PubMed  Google Scholar 

  64. Holzapfel BM, Reichert JC, Schantz J-T, Gbureck U, Rackwitz L, Nöth U, et al. How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev. 2013;65(4):581–603.

    Article  CAS  PubMed  Google Scholar 

  65. Kyriakidou K, Lucarini G, Zizzi A, Salvolini E, Mattioli Belmonte M, Mollica F, et al. Dynamic co-seeding of osteoblast and endothelial cells on 3D polycaprolactone scaffolds for enhanced bone tissue engineering. J Bioact Compat Polym. 2008;23(3):227–43.

    Article  CAS  Google Scholar 

  66. Dini F, Barsotti G, Puppi D, Coli A, Briganti A, Giannessi E, et al. Tailored star poly (ε-caprolactone) wet-spun scaffolds for in vivo regeneration of long bone critical size defects. J Bioact Compat Polym. 2016;31(1):15–30.

    Article  CAS  Google Scholar 

  67. Mota C, Puppi D, Chiellini F, Chiellini E. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med. 2015;9(3):174–90.

    Article  CAS  PubMed  Google Scholar 

  68. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1(9):910–7.

    Article  CAS  PubMed  Google Scholar 

  69. Mohebi MM, Evans JR. A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J Comb Chem. 2002;4(4):267–74.

    Article  CAS  PubMed  Google Scholar 

  70. Zohora FT, Azim AYMA. Inkjet printing: an emerging technology for 3d tissue or organ printing. Eur Sci J. 2014;10(30):1857.

    Google Scholar 

  71. Mohaghegh S, Hosseini S, Rezai Rad M, Khojasteh A. 3D printed composite scaffolds in bone tissue engineering: a systematic review. Curr Stem Cell Res Ther. 2021;16:648.

    Google Scholar 

  72. Kumar P, Ebbens S, Zhao X. Inkjet printing of mammalian cells–theory and applications. Bioprinting. 2021;23:e00157.

    Article  Google Scholar 

  73. Alamán J, Alicante R, Peña JI, Sánchez-Somolinos C. Inkjet printing of functional materials for optical and photonic applications. Materials. 2016;9(11):910.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tao O, Kort-Mascort J, Lin Y, Pham HM, Charbonneau AM, ElKashty OA, et al. The applications of 3D printing for craniofacial tissue engineering. Micromachines. 2019;10(7):480.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jammalamadaka U, Tappa K. Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater. 2018;9(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. J Funct Biomater. 2018;9(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang Y, Tse C, Rouholamin D, Smith PJ. Scaffolds for tissue engineering produced by inkjet printing. Cent Eur J Eng. 2012;2(3):325–35.

    CAS  Google Scholar 

  78. Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Kadri NA, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater. 2015;16:033502.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Delaney JT, Smith PJ, Schubert US. Inkjet printing of proteins. Soft Matter. 2009;5(24):4866–77.

    Article  CAS  Google Scholar 

  80. Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev. 2014;59(8):430–48.

    Article  CAS  Google Scholar 

  81. Li J, Rossignol F, Macdonald J. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab Chip. 2015;15(12):2538–58.

    Article  CAS  PubMed  Google Scholar 

  82. Kenyon R. Ink jet printing. In: Chemistry and technology of printing and imaging systems. Cham: Springer; 1996. p. 113–38.

    Chapter  Google Scholar 

  83. Gregory P. Presented in part at the International Textile Machinery Association. Textile ink jet printing a review of ink jet printing of textiles, including ITMA 2003. 2003.

    Google Scholar 

  84. Matsuda Y, Sakata M, Yamada T, Yoshino M. Microdot ink jet recorder. Assignee: Hitachi Koki, Co Ltd. US4746928 A. 1988.

    Google Scholar 

  85. Sridhar A, Blaudeck T, Baumann RR. Inkjet printing as a key enabling technology for printed electronics. Mater Matt. 2011;6(1):12–5.

    CAS  Google Scholar 

  86. Cui X, Boland T, DD'Lima D, Lotz KM. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6(2):149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hock SW, Johnson DA, Van Veen MA. Print quality optimization for a color ink-jet printer by using a larger nozzle for the black ink only. Google Patents. 1996.

    Google Scholar 

  88. Hudson KR, Cowan PB, Gondek JS. Ink drop volume variance compensation for inkjet printing. Google Patents. 2000.

    Google Scholar 

  89. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    Article  CAS  PubMed  Google Scholar 

  90. Calvert P. Printing cells. Science. 2007;318(5848):208–9.

    Article  CAS  PubMed  Google Scholar 

  91. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422–34.

    Article  CAS  PubMed  Google Scholar 

  92. de Jong J, de Bruin G, Reinten H, van den Berg M, Wijshoff H, Versluis M, et al. Air entrapment in piezo-driven inkjet printheads. J Acoust Soc Am. 2006;120(3):1257–65.

    Article  Google Scholar 

  93. Henares TG, Yamada K, Suzuki K, Citterio D. Inkjet printing of biomolecules for biorecognition. Design of polymeric platforms for selective biorecognition. Cham: Springer; 2015. p. 197–235.

    Book  Google Scholar 

  94. Fang Y, Frampton JP, Raghavan S, Sabahi-Kaviani R, Luker G, Deng CX, et al. Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods. 2012;18(9):647–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sirringhaus H, Kawase T, Friend R, Shimoda T, Inbasekaran M, Wu W, et al. High-resolution inkjet printing of all-polymer transistor circuits. Science. 2000;290(5499):2123–6.

    Article  CAS  PubMed  Google Scholar 

  96. Wang J, Zheng Z, Li H, Huck W, Sirringhaus H. Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater. 2004;3(3):171–6.

    Article  PubMed  Google Scholar 

  97. Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol. 2001;19(4):342–7.

    Article  CAS  PubMed  Google Scholar 

  98. Lemmo AV, Rose DJ, Tisone TC. Inkjet dispensing technology: applications in drug discovery. Curr Opin Biotechnol. 1998;9(6):615–7.

    Article  CAS  PubMed  Google Scholar 

  99. Okamoto T, Suzuki T, Yamamoto N. Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol. 2000;18(4):438–41.

    Article  CAS  PubMed  Google Scholar 

  100. Roda A, Guardigli M, Russo C, Pasini P, Baraldini M. Protein microdeposition using a conventional ink-jet printer. BioTechniques. 2000;28(3):492–6.

    Article  CAS  PubMed  Google Scholar 

  101. Tekin E, Smith PJ, Schubert US. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter. 2008;4(4):703–13.

    Article  CAS  PubMed  Google Scholar 

  102. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barinov S, Vakhrushev I, Komlev V, Mironov A, Popov V, Teterina AY, et al. 3D printing of ceramic scaffolds for engineering of bone tissue. Inorg Mater Appl Res. 2015;6(4):316–22.

    Article  Google Scholar 

  104. Cooper GM, Miller ED, DeCesare GE, Usas A, Lensie EL, Bykowski MR, et al. Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng Part A. 2010;16(5):1749–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chou D-T, Wells D, Hong D, Lee B, Kuhn H, Kumta PN. Novel processing of iron–manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater. 2013;9(10):8593–603.

    Article  CAS  PubMed  Google Scholar 

  106. Seetharam R, Sharma SK. Purification and analysis of recombinant proteins. Boca Raton, FL: CRC; 1991.

    Google Scholar 

  107. Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng. 2010;106(6):963–9.

    Article  CAS  PubMed  Google Scholar 

  108. Ronca A, Ambrosio L, Grijpma DW. Design of porous three-dimensional PDLLA/nano-hap composite scaffolds using stereolithography. J Appl Biomater Funct Mater. 2012;10(3):249–58.

    CAS  PubMed  Google Scholar 

  109. Lee JW, Kang KS, Lee SH, Kim JY, Lee BK, Cho DW. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials. 2011;32(3):744–52.

    Article  CAS  PubMed  Google Scholar 

  110. Stein F, Trikalitis V, Rouwkema J, Salehi-Nik N. Vascularization in oral and maxillofacial tissue engineering. In: Seppänen-Kaijansinkko R, editor. Tissue engineering in oral and maxillofacial surgery. Cham: Springer; 2019. p. 97–122.

    Chapter  Google Scholar 

  111. Lemercier G, Mulatier J, Martineau C, Anémian R, Andraud C, Wang I, et al. Two-photon absorption: from optical power limiting to 3D microfabrication. C R Chim. 2005;8:1308–16.

    Article  CAS  Google Scholar 

  112. Huang J, Qin Q, Wang JJP. A review of stereolithography: processes and systems. Processes. 2020;8(9):1138.

    Article  CAS  Google Scholar 

  113. Ji K, Wang Y, Wei Q, Zhang K, Jiang A, Rao Y, et al. Application of 3D printing technology in bone tissue engineering. Bio-Des Manuf. 2018;1(3):203–10.

    Article  Google Scholar 

  114. Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017;5(9):1690–8.

    Article  CAS  PubMed  Google Scholar 

  115. Du X, Fu S, Zhu Y. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. J Mater Chem B. 2018;6(27):4397–412.

    Article  CAS  PubMed  Google Scholar 

  116. Lee JW, Lan PX, Kim B, Lim G, Cho D-W. 3D scaffold fabrication with PPF/DEF using micro-stereolithography. Microelectron Eng. 2007;84(5–8):1702–5.

    Article  CAS  Google Scholar 

  117. Lee SJ, Kang HW, Park JK, Rhie JW, Hahn SK, Cho DW. Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed Microdevices. 2008;10(2):233–41.

    Article  CAS  PubMed  Google Scholar 

  118. Mapili G, Lu Y, Chen S, Roy K. Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res B Appl Biomater. 2005;75(2):414–24.

    Article  PubMed  Google Scholar 

  119. Melchels FP, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials. 2010;31(27):6909–16.

    Article  CAS  PubMed  Google Scholar 

  120. Lee JW, Lan PX, Kim B, Lim G, Cho DW. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J Biomed Mater Res B Appl Biomater. 2008;87(1):1–9.

    Article  PubMed  Google Scholar 

  121. Li B, Wei H, Zeng F, Li J, Xia JJ, Wang X. Application of a novel three-dimensional printing genioplasty template system and its clinical validation: a control study. Sci Rep. 2017;7(1):5431.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wang L-D, Ma W, Fu S, Zhang C-B, Cui Q-Y, Peng C-B, et al. Design and manufacture of dental-supported surgical guide for genioplasty. J Dent Sci. 2021;16(1):417–23.

    Article  CAS  PubMed  Google Scholar 

  123. Oth O, Durieux V, Orellana M-F, Glineur R. Genioplasty with surgical guide using 3D-printing technology: a systematic review. J Clin Exp Dent. 2020;12(1):e85–92.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Staffa G, Barbanera A, Faiola A, Fricia M, Limoni P, Mottaran R, et al. Custom made bioceramic implants in complex and large cranial reconstruction: a two-year follow-up. J Craniomaxillofac Surg. 2012;40(3):e65–70.

    Article  PubMed  Google Scholar 

  125. Brie J, Chartier T, Chaput C, Delage C, Pradeau B, Caire F, et al. A new custom made bioceramic implant for the repair of large and complex craniofacial bone defects. J Craniomaxillofac Surg. 2013;41(5):403–7.

    Article  PubMed  Google Scholar 

  126. Arcaute K, Mann B, Wicker R. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. 2010;6(3):1047–54.

    Article  CAS  PubMed  Google Scholar 

  127. Lu Y, Mapili G, Suhali G, Chen S, Roy K. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A. 2006;77A(2):396–405.

    Article  CAS  Google Scholar 

  128. Kadry H, Wadnap S, Xu C, Ahsan F. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci. 2019;135:60–7.

    Article  CAS  PubMed  Google Scholar 

  129. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed. 2017;28(16):1797–825.

    Article  CAS  PubMed  Google Scholar 

  130. Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater. 2015;16(3):033502.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers (Basel). 2021;13(18):3101.

    Article  CAS  PubMed  Google Scholar 

  132. Kamboj N, Ressler A, Hussainova I. Bioactive ceramic scaffolds for bone tissue engineering by powder bed selective laser processing: a review. Materials. 2021;14(18):5338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liu F-H, Lee R-T, Lin W-H, Liao Y-S. Selective laser sintering of bio-metal scaffold. Proc CIRP. 2013;5:83–7.

    Article  Google Scholar 

  134. Shuai C, Mao Z, Lu H, Nie Y, Hu H, Peng S. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication. 2013;5(1):015014.

    Article  CAS  PubMed  Google Scholar 

  135. Deng Y, Kuiper J. Functional 3D tissue engineering scaffolds: materials, technologies, and applications. Sawston: Woodhead Publishing; 2017.

    Google Scholar 

  136. Garot C, Bettega G, Picart C. Additive manufacturing of material scaffolds for bone regeneration: toward application in the clinics. Adv Funct Mater. 2020;31(5):2006967.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Popov V, Antonov E, Bagratashvili B, Konovalov A, Howdle S. Selective laser sintering of 3-D biodegradable scaffolds for tissue engineering. In: Materials research society symposium proceedings; 2004.

    Google Scholar 

  138. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496–504.

    Article  CAS  Google Scholar 

  139. Fernandes N, van den Heever J, Hoogendijk C, Botha S, Booysen G, Els J. Reconstruction of an extensive midfacial defect using additive manufacturing techniques. J Prosthodont. 2016;25(7):589–94.

    Article  PubMed  Google Scholar 

  140. Salmi M, Tuomi J, Paloheimo KS, Björkstrand R, Paloheimo M, Salo J, et al. Patient-specific reconstruction with 3D modeling and DMLS additive manufacturing. Rapid Prototyp J. 2012;18:209.

    Article  Google Scholar 

  141. Bachelet J-T, Cordier G, Porcheray M, Bourlet J, Gleizal A, Foletti J-M. Orbital reconstruction by patient-specific implant printed in porous titanium: a retrospective case series of 12 patients. J Oral Maxillofac Surg. 2018;76(10):2161–7.

    Article  PubMed  Google Scholar 

  142. Jardini AL, Larosa MA, de Carvalho Zavaglia CA, Bernardes LF, Lambert CS, Kharmandayan P, et al. Customised titanium implant fabricated in additive manufacturing for craniomaxillofacial surgery. Virtual Phys Prototyp. 2014;9(2):115–25.

    Article  Google Scholar 

  143. Ma J, Ma L, Wang Z, Zhu X, Wang W. The use of 3D-printed titanium mesh tray in treating complex comminuted mandibular fractures: a case report. Medicine. 2017;96(27):e7250.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sumida T, Otawa N, Kamata YU, Kamakura S, Mtsushita T, Kitagaki H, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh. J Craniomaxillofac Surg. 2015;43(10):2183–8.

    Article  PubMed  Google Scholar 

  145. Tunchel S, Blay A, Kolerman R, Mijiritsky E, Shibli JA. 3D printing/additive manufacturing single titanium dental implants: a prospective multicenter study with 3 years of follow-up. Int J Dent. 2016;2016:8590971.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, et al. 3D-printed Bioresorbable scaffold for periodontal repair. J Dent Res. 2015;94(9_suppl):153S–7S.

    Article  CAS  PubMed  Google Scholar 

  147. Redwood B, Schöffer F, Garret B. The 3D printing handbook: technologies, design and applications. Amsterdam: 3D Hubs; 2017.

    Google Scholar 

  148. Popov V, Katz-Demyanetz A, Bamberger M. Heat transfer and phase formation through EBM 3D-printing of Ti-6Al-4V cylindrical parts. In: Defect and diffusion forum. Bach, SZ: Trans Tech Publications; 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boroojeni, H.S.H., Mohaghegh, S., Khojasteh, A. (2023). Classification of Cutting-Edge Additive Manufacturing Techniques. In: Khojasteh, A., Ayoub, A.F., Nadjmi, N. (eds) Emerging Technologies in Oral and Maxillofacial Surgery . Springer, Singapore. https://doi.org/10.1007/978-981-19-8602-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8602-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8601-7

  • Online ISBN: 978-981-19-8602-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics