Skip to main content

Numerical Modeling and Simulation of Micromachining of Biomedical Materials Using Nd: YAG Millisecond Pulse Laser

  • Conference paper
  • First Online:
Low Cost Manufacturing Technologies (NERC 2022)

Abstract

Laser micromachining is widely used in generating micro-features in critical components required for biomedical and industrial applications such as dental implants, hip prostheses, knee prostheses, stents, and clinical laboratory components. The feature quality depends on the appropriate selection of laser process parameters, such as pulse duration, pulse repetition rate, and pulse power density. To establish laser micromachining in industries, systematic investigations using finite element models and experimental methods are required. Numerical modeling can be a valuable tool for reducing experimental time, experimental cost, and resources when predicting optimized parameters for an experiment. In this work an extensive and systematic two-dimensional transient thermo-physical analysis has been carried out to compute the feature size and predict the surface quality. The work material was taken as Titanium alloy (Ti–6Al–4V), widely used in biomedical and aerospace applications. The model considers more realistic assumptions such as moving Gaussian heat source, temperature-dependent materials properties, and the combined effect of convection and radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Muthuramalingam T et al (2020) Influence of process parameters on dimensional accuracy of machined Titanium (Ti–6Al–4V) alloy in laser beam machining process. Opt Laser Technol 132(July):106494

    Google Scholar 

  2. Parandoush P, Hossain A (2014) A review of modeling and simulation of laser beam machining. Int J Mach Tools Manuf 85(Oct 2014):135–145

    Google Scholar 

  3. Saternus Z, Piekarska W, Kubiak M, Domański T, Goszczyńska-Króliszewska D (2019) Numerical modeling of cutting process of steel sheets using a laser beam. MATEC Web Conf. 254:08004

    Article  Google Scholar 

  4. Miller PR, Aggarwal R, Doraiswamy A, Lin YJ, Lee YS, Narayan RJ (2009) Laser micromachining for biomedical applications. JoM 61(9):35–40

    Article  Google Scholar 

  5. Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, Le Maître F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209(5):2223–2230

    Article  Google Scholar 

  6. Qi H, Chen T, Yao L, Zuo T (2009) Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Opt Lasers Eng 47(5):594–598

    Article  Google Scholar 

  7. Zhang P, Chen L, Chen J, Tu Y (2017) Material removal effect of microchannel processing by femtosecond laser. Opt Lasers Eng 98:69–75

    Article  Google Scholar 

  8. Al-Shibaany ZYA, Penchev P, Hedley J, Dimov S (2020) Laser micromachining of Lithium niobate-based resonant sensors towards medical devices applications. Sensors (Switzerland) 20(8)

    Google Scholar 

  9. Optimization of laser micromachining of Ti–6Al–4V | Elsevier Enhanced Reader

    Google Scholar 

  10. Hybrid laser and micro milling methods for higher depth microchannel fabrication_Elsevier Enhanced Reader.pdf

    Google Scholar 

  11. Sarma U, Joshi SN (2020) Numerical modelling and simulation of microchannel fabrication on polycarbonate using Laser-Induced Plasma Assisted Ablation (LIPAA). Optik (Stuttg) 223(Aug):165379

    Google Scholar 

  12. Liu Y, Liu X, Li T, Tian Y (2021) Numerical modelling and experimental study on pulsed laser surface texturing on cemented carbides. Int J Adv Manuf Technol 114(9–10):3137–3145

    Google Scholar 

  13. Sun A, Chang Y, Liu H (2019) Numerical simulation of laser drilling and electrochemical machining of metal micro-hole. Optik (Stuttg) 181(Nov 2018):92–98

    Google Scholar 

  14. Pramanik A, Basak AK (2014) Sustainability in wire electrical discharge machining of titanium alloy: understanding wire rupture. J Clean Prod 198(Pramanik 2014):472–479

    Google Scholar 

  15. Yilbas BS, Akhtar SS, Karatas C (2012) Laser hole cutting into Ti–6Al–4V alloy and thermal stress analysis. Int J Adv Manuf Technol 59(9–12):997–1008

    Article  Google Scholar 

  16. Xie BC, Wang YK, Wang ZL, Zhao WS (2011) Numerical simulation of titanium alloy machining in electric discharge machining process. Trans Nonferr Met Soc China (English Ed) 21(SUPPL 2):s434–s439

    Google Scholar 

  17. Kiran Kumar K, Samuel GL, Shunmugam MS (2019) Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy. J Mater Process Technol 263(May 2018):266–275

    Google Scholar 

  18. Ren N, Jiang L, Liu D, Lv L, Wang Q (2015) Comparison of the simulation and experimental of hole characteristics during nanosecond-pulsed laser drilling of thin titanium sheets. Int J Adv Manuf Technol 76(5–8):735–743

    Article  Google Scholar 

  19. Wagner RE (1974) Laser drilling mechanics. J Appl Phys 45(10):4631–4637

    Article  Google Scholar 

  20. Sharma S, Mandal V, Ramakrishna SA, Ramkumar J (2018) Numerical simulation of melt hydrodynamics induced hole blockage in Quasi-CW fiber laser micro-drilling of TiAl6V4. J Mater Process Technol 262(May):131–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikrishna Nandkishor Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, B.K., Kapil, S., Joshi, S.N. (2023). Numerical Modeling and Simulation of Micromachining of Biomedical Materials Using Nd: YAG Millisecond Pulse Laser. In: Joshi, S.N., Dixit, U.S., Mittal, R.K., Bag, S. (eds) Low Cost Manufacturing Technologies. NERC 2022. Springer, Singapore. https://doi.org/10.1007/978-981-19-8452-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8452-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8451-8

  • Online ISBN: 978-981-19-8452-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics