Skip to main content

An Outstanding Perspective on Biological Dynamics in Vermicomposting Matrices

  • Chapter
  • First Online:
Vermicomposting for Sustainable Food Systems in Africa

Abstract

Vermicomposting is the decomposition of organic waste by earthworms and microorganisms such as bacteria and fungi. When various organic wastes are vermicomposted, a nutrient-rich product that can be used as a plant biofertiliser is produced. However, to optimise vermicomposting, a better understanding of the underlying biological dynamics in the vermicomposting community is required. This chapter seeks to explore the biological dynamics during vermicomposting. Firstly, critical organisms involved in vermicomposting, their roles, and the biotransformation processes involved are critically examined. The yields of vermicompost by different vermicomposting substrates and earthworm species are summarised. Methods for identifying vermicomposting organismal drivers are highlighted. Bacterial succession during vermicomposting is highlighted, as well as various benefits associated with applications of vermicomposting. Lastly, as part of the biological dynamics in vermicomposting, the effects of bacteria and earthworms on plant growth and health are summarised. Understanding biological dynamics in vermicomposting, as a result, can pave the way for novel techniques that have the potential to improve vermicompost quality, thereby improving plant growth and health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikary S (2012) Vermicompost, the story of organic gold: a review. Agric Sci 3(7):905–917. https://doi.org/10.4236/as.2012.37110

    Article  Google Scholar 

  • Aira M, Monroy F, Domínguez J (2007) Eisenia fetida (Oligochaeta: Lumbricidae) modifes the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb Ecol 54:662–671

    Article  PubMed  Google Scholar 

  • Aira M, Pérez-Losada M, Domínguez J (2019) Microbiome dynamics during cast ageing in the earthworm Aporrectodeacaliginosa. Appl Soil Ecol 139:56–63

    Article  Google Scholar 

  • Aladesida AA, Dedeke GA, Ademolu K, Museliu F (2014) Nutrient analysis of three earthworm cast-types collected from Ikenne, Ogun State, Nigeria. J Nat Sci Eng Technol 13:36–43

    Google Scholar 

  • Alcock RE, Sweetman A, Jones KC (1999) Assessment of organic contaminant fate in wastewater treatment plants I: selected compounds and physicochemical properties. Chemosphere 38(10):2247–2262

    Article  CAS  PubMed  Google Scholar 

  • Ali U, Sajid N, Khalid A, Riaz L, Rabbani MM, Syed JH, Malik RN (2015) A review on vermicomposting of organic wastes. Environ Prog Sustain Energy 34(4):1050–1062

    Article  CAS  Google Scholar 

  • Alshehrei F, Ameen F (2021) Vermicomposting: a management tool to mitigate solid waste. Saudi J Biol Sci

    Google Scholar 

  • Amaravathi G, Reddy Mallikarjuna R (2015) Environmental factors affecting vermicomposting of municipal solid waste. Int J Pharm Biol Sci 5(3):81–93

    Google Scholar 

  • Ameen F, Al-Homaidan AA (2022) Improving the efficiency of vermicomposting of polluted organic food wastes by adding biochar and mangrove fungi. Chemosphere 286:131945

    Article  CAS  PubMed  Google Scholar 

  • Amouei AI, Yousefi Z (2017) Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes:1–6. https://doi.org/10.1186/s40201-017-0269-z

  • Ansari A, & Hanief A (2013) Microbial succession during vermicomposting (No. 537-2016-38589)

    Google Scholar 

  • Ansari AA, Ori L, &Ramnarain YI (2020) An effective organic waste recycling through vermicompost technology for soil health restoration. In Soil Health Restoration and Management (83–112). Springer, Singapore

    Google Scholar 

  • AOAC (1995). Association of Official Analytical Chemists. Official Methos of Analysis 20th edn. USA

    Google Scholar 

  • Arumugam K, Ganesan S, Muthunarayanan V, Vivek S, Sugumar S, Munusamy V (2015) Potentiality of Eisenia fetida to degrade disposable paper cups—an eco-friendly solution to solid waste pollution. Environ Sci Pollut Res 22(4):2868–2876

    Article  CAS  Google Scholar 

  • Aslam Z, Bashir S, Hassan W, Bellitürk K, Ahmad N (2019a) Unveiling the efficiency of vermicompost derived from different biowastes on wheat (Triticum aestivum L.) plant growth and soil health. Agronomy 9(12):791

    Article  CAS  Google Scholar 

  • Aslam Z, Bashir S, Hassan W, Bellitürk K, Ahmad N, Niazi NK et al (2019b) Unveiling the efficiency of vermicompost derived from different biowastes on wheat (Triticum aestivum L.) plant growth and soil health. Agronomy 9(12):791

    Article  CAS  Google Scholar 

  • Atiyeh RM, Domínguez J, Subler S, Edwards CA (2000) Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth. Pedobiologia 44(6):709–724

    Article  Google Scholar 

  • Bajal S, Subedi S, Baral S (2019) Utilisation of agricultural wastes as substrates for vermicomposting. IOSR J Agric Vet Sci (IOSR-JAVS) 12(8):79–84

    Google Scholar 

  • Baker GH, Barrett VJ, Grey-Gardner R, Buckerfield JC (1992) The life history and abundance of the introduced earthworms Aporrectodae trapezoids and Aporrectodaecaliginosain pasture soils in the Mount Lofty Range, South Australia. Aust J Ecol 17(2):177–188

    Article  Google Scholar 

  • Benıtez E, Nogales R, Masciandaro G, Ceccanti B (2000) Isolation by isoelectric focusing of humic–urease complexes from earthworm (Eisenia fetida)-processed sewage sludges. Biol Fertil Soils 31:489–493

    Article  Google Scholar 

  • Bhardwaj P, & Sharma RK (2015) Vermicomposting efficiency of earthworm species from eastern Haryana Vermicomposting efficiency of earthworm species from eastern Haryana. (July)

    Google Scholar 

  • Bhat SA, Singh J, Vig AP (2017) Instrumental characterisation of organic wastes for evaluation of vermicompost maturity. J Anal Sci Technol 8(1):1–12

    Article  Google Scholar 

  • Bhat SA, Singh S, Singh J, Kumar S, Vig AP (2018) Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresour Technol 252:172–179

    Article  CAS  PubMed  Google Scholar 

  • Biruntha M, Karmegam N, Archana J, Selvi BK, Paul JAJ, Balamuralikrishnan B et al (2020) Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresour Technol 297:122398

    Article  CAS  PubMed  Google Scholar 

  • Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Brun JJ (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64(2):161–182

    Article  Google Scholar 

  • Boyer S, Wratten SD (2010) Using molecular tools to identify New Zealand endemic earthworms in a mine restoration project. Zoology in the Middle East 51(2):31–40. https://doi.org/10.1080/09397140.2010.10638455

    Article  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total organic and available form of phosphorus in soil. Soil Soc 59:39–45

    Article  CAS  Google Scholar 

  • Cardoso VL, Ramírez CE, Escalante EV (2008) Vermicomposting technology for stabilising the sewage sludge from rural wastewater treatment plants. Water Pract Technol 3:1

    Article  Google Scholar 

  • Chanu LJ, Hazarika S, Choudhury BU, Ramesh T, Balusamy A, Moirangthem P, Yumnam A, Sinha PK (2018) A guide to vermicomposting-production process and socio-economic aspects. Ext Bull 81:30

    Google Scholar 

  • Chattopadhyay ST (2014) Biodegradation of novel chitin biocomposites

    Google Scholar 

  • Chaulagain A, Dhurva P, Lamichhane GJ (2017) Vermicompost and its role in plant growth promotion. Int J Res 4(8):849–864

    Google Scholar 

  • Chen G, Zheng Z, Yang S, Fang C, Zou X, Luo Y (2010) Experimental co-digestion of corn stalk and vermicompost to improve biogas production. Waste Manag 30(10):1834–1840

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chang SK, Chen J, Zhang Q, Yu H (2018) Characterisation of microbial community succession during vermicomposting of medicinal herbal residues. Bioresour Technol 249:542–549

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhang Y, Shi X, Xu L, Zhang L, Zhang L (2022) The succession of GH6 cellulase-producing microbial communities and temporal profile of GH6 gene abundance during vermicomposting of maise Stover and cow dung. Bioresour Technol 344:126242

    Article  CAS  PubMed  Google Scholar 

  • Coulibaly SS, Bi IAZ (2010) Influence of animal wastes on growth and reproduction of the African earthworm species Eudriluseugeniae (Oligochaeta). Eur J Soil Biol 46(3–4):225–229. https://doi.org/10.1016/j.ejsobi.2010.03.004

    Article  Google Scholar 

  • Cui G, Fu X, Bhat SA, Tian W, Lei X, Wei Y, Li F (2022) Temperature impacts fate of antibiotic resistance genes during vermicomposting of domestic excess activated sludge. Environ Res 112654

    Google Scholar 

  • Das SN, Neeraja C, Sarma PVSRN, Prakash JM, Purushotham P, Kaur M, ... &Podile AR (2012) Microbial chitinases for chitin waste management. In Microorganisms in Environmental Management (pp. 135–150). Springer, Dordrecht

    Google Scholar 

  • Das S, Deka P, Goswami L, Sahariah B, Hussain N, Bhattacharya SS (2016) Vermiremediation of toxic jute mill waste employing Metaphire posthuma. Environ Sci Pollut Res 23:15418–15431

    Article  CAS  Google Scholar 

  • Domínguez J (2004) In: Edwards CA (ed) Earthworm ecology, CRC Press, pp 401–424

    Google Scholar 

  • Dominguez J, Edwards CA (2011) Relationships between composting and vermicomposting. In: Vermiculture technology earthworms, organic wastes, and environmental management. CRC Press, Boca Raton, FL, USA, pp 11–26

    Google Scholar 

  • Domínguez J, Aira M, & Gómez-Brandón M (2010) Vermicomposting: earthworms enhance the work of microbes. In Microbes at work. Springer, Berlin, Heidelberg, p 93–114

    Google Scholar 

  • Domínguez J, Gómez-Brandón M, Martínez-Cordeiro H, Lores M (2018) Bioconversion of Scotch broom into a high-quality organic fertiliser: Vermicomposting as a sustainable option. Waste Manag Res 36:1092–1099

    Article  PubMed  Google Scholar 

  • Domínguez J, Aira M, Kolbe AR, Gómez-Brandón M, Pérez-Losada M (2019) Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost. Sci Rep 9(1):1–11

    Article  Google Scholar 

  • Domínguez J, Velando A, Ferreiro A (2005) Are Eisenia fetida (Savigny, 1826) and Eiseniaandrei (Oligochaeta, Lumbricidae) different biological species? Pedobiologia 49(1):81–87. https://doi.org/10.1016/j.pedobi.2004.08.005

    Article  Google Scholar 

  • Donohoe K. (2018) Chemical and microbial characteristics of vermicompost leachate and their effect on plant growth (Doctoral dissertation, The University of Sydney). https://ses.library.usyd.edu.au/bitstream/handle/2123/18212/donohoe_kd_thesis.pdf;sequence=1

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman and Hall, London

    Google Scholar 

  • Edwards CA, Lofty JR (1977) Biology of earthworms. Chapman and Hall, London, UK

    Book  Google Scholar 

  • Gajalakshmi S, Ramasamy EV, Abbasi SA (2001) Potential of two epigeic and two anecic earthworm species in vermicomposting of water hyacinth. Bioresour Technol 76(3):177–181

    Article  CAS  PubMed  Google Scholar 

  • García AC, Izquierdo FG, de Amaral Sobrinho NMB, Castro RN, Santos LA, de Souza LGA, Berbara RLL (2013) Humified insoluble solid for efficient decontamination of nickel and lead in industrial effluents. J Environ Chem Eng 1(4):916–924

    Article  Google Scholar 

  • Gómez Brandón M, Aira M, Kolbe AR, De Andrade N, Pérez-Losada M, Domínguez J (2019) Rapid bacterial community changes during vermicomposting of grape marc derived from red winemaking. Microorganisms 7(10):473

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Brandón M, Domínguez J (2014) Changes of microbial communities during the vermicomposting process and after application to the soil. Crit Rev Environ Sci Technol 44:1289–1312

    Article  Google Scholar 

  • Goswami L, Sarkar S, Mukherjee S, Das S, Barman S, Raul P, Bhattacharya SS (2014) Vermicomposting of tea factory coal ash: metal accumulation and metallothionein response in Eisenia fetida (Savigny) and Lampitomauritii (Kinberg). Bioresour Technol 166:96–102

    Article  CAS  PubMed  Google Scholar 

  • Greco C, Comparetti A, Fascella G, Febo P, La Placa G, Saiano F, Laudicina VA (2021) Effects of vermicompost, compost and digestate as commercial alternative peat-based substrates on qualitative parameters of Salvia officinalis. Agronomy 11(1):98

    Article  CAS  Google Scholar 

  • Gudeta K, Julka JM, Kumar A, Bhagat A, Kumari A (2021) Vermiwash: an agent of disease and pest control in soil, a review. Heliyon 7(3):e06434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gusain R, Suthar S (2020) Vermicomposting of invasive weed Ageratum conyzoids: assessment of nutrient mineralisation, enzymatic activities, and microbial properties. Bioresour Technol 312:123537

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Corona JF, Romo-Rodríguez P, Santos-Escobar F, Espino-Saldaña AE, Hernández-Escoto H (2016) Microbial interactions with chromium: basic biological processes and applications in environmental biotechnology. World J Microbiol Biotechnol 32(12):1–9

    Article  Google Scholar 

  • Hanc A, Enev V, Hrebeckova T, Klucakova M, Pekar M (2019) Characterisation of humic acids in a continuous-feeding vermicomposting system with horse manure. Waste Manag 99:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hand P, Hayes WA, Frankland JC, Satchell JE (1988) The vermicomposting of cow slurry. Pedobiologia 31:199–209

    Google Scholar 

  • He X, Zhang Y, Shen M, Zeng G, Zhou M, Li M (2016) Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials. Bioresour Technol 218:867–873

    Article  CAS  PubMed  Google Scholar 

  • Hendrix PF, Muller BR, Bruce BR, Langdale GW, Parmelee RW (1992) Abundance and distribution of earthworms in relation to landscape factors on the Georgia piedmont, U.S.A. Soil Biol Biochem 24:1357–1361

    Article  Google Scholar 

  • Houpikian P, Raoult D (2002) Traditional and molecular techniques for the study of emerging bacterial diseases: one laboratory's perspective. Emerg Infect Dis 8(2):122–131. https://doi.org/10.3201/eid0802.010141

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim MH, Quaik S, & Ismail SA (2016) Vermicompost, its applications and derivatives. In Prospects of organic waste management and the significance of earthworms (pp. 201–230). Springer, Cham

    Google Scholar 

  • Indrani Y, Abdullah R, Ansari A, Ori L (2019) Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. Int J Recycl Org Waste Agric 8(1):23–36. https://doi.org/10.1007/s40093-018-0225-7

    Article  Google Scholar 

  • Jamali M, Bakhshandeh E, Khanghahi MY, Crecchio C (2021) Metadata analysis to evaluate environmental impacts of wheat residues burning on soil quality in developing and developed countries. Sustainability 13(11):1–13. https://doi.org/10.3390/su13116356

    Article  CAS  Google Scholar 

  • Kale RD, & Karmegam N (2010) The role of earthworms in tropics with emphasis on indian ecosystems. 2010. https://doi.org/10.1155/2010/414356

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analysing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kui H, Jingyang C, Mengxin G, Hui X, Li L (2020) Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. J Hazard Mater 397:122767

    Article  PubMed  Google Scholar 

  • Kumari S, Manyapu V, Kumar R (2022) Recent advances in composting and vermicomposting techniques in the cold region: resource recovery, challenges, and way forward. Adv Organic Waste Manage:131–154

    Google Scholar 

  • Lacalle RG, Aparicio JD, Artetxe U, Urionabarrenetxea E, Polti MA, Soto M, Becerril JM (2020) Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation. Heliyon 6(8):e04550

    Article  PubMed  PubMed Central  Google Scholar 

  • Langille MG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazcano C, Domínguez J (2014) The use of vermicompost in sustainable agriculture: impact on plant growth and soil fertility. In: Miransari M (ed) Soil Nutrients. Nova Science Publishers, Inc., pp 211–233

    Google Scholar 

  • Lee LH, Wu TY, Shak KPY, Lim SL, Ng KY, Nguyen MN, Teoh WH (2018) Sustainable approach to biotransform industrial sludge into organic fertiliser via vermicomposting: a mini-review. J Chem Technol Biotechnol 93(4):925–935

    Article  CAS  Google Scholar 

  • Lim SL, Wu TY, Clarke C (2014) Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms. J Agric Food Chem 62(3):691–698

    Article  CAS  PubMed  Google Scholar 

  • Lim SL, Wu TY, Lim PN, Shak KPY (2015) The use of vermicompost in organic farming: overview, effects on soil and economics. J Sci Food Agric 95(6):1143–1156

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Zhu P, Xue J (2012) Comparative study on physical and chemical characteristics of sludge vermicomposted by Eisenia fetida. Procedia Environ Sci 16:418–423

    Article  CAS  Google Scholar 

  • Liyarna R, Krishnaswamy VG, J, M. I. S (2020) Influence of various substrates in vermicomposting its application on different plants (Abelmoschus esculentus, Capsicum annum and Trigonella foetum-graceum). 7(6):6–13

    Google Scholar 

  • Lopez MJ, del Carmen Vargas-García M, Suárez-Estrella F, Moreno J (2006) Biodelignification and humification of horticultural plant residues by fungi. Int Biodeterior Biodegradation 57(1):24–30

    Article  CAS  Google Scholar 

  • Lv B, Cui Y, Wei H, Chen Q, Zhang D (2020) Elucidating the role of earthworms in N2O emission and production pathway during vermicomposting of sewage sludge and rice straw. J Hazard Mater 400:123215

    Article  CAS  PubMed  Google Scholar 

  • Lv B, Xing M, Yang J (2016) Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresour Technol 209:397–401

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Dickson NM, Wong MH (2002) Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability. Biol Fert Soils 36

    Google Scholar 

  • Machfudz M, Basit A, & Handoko RNS (2020) Effectiveness of vermicompost with additives of various botanical pesticides in controlling Plutellaxylostella and their effects on the yield of cabbage (Brassica oleracea L. var. Capitata)

    Google Scholar 

  • Maji D, Singh M, Wasnik K, Chanotiya CS, Kalra A (2015) The role of a novel fungal strain Trichoderma atroviride RVF 3 in improving humic acid content in mature compost and vermicompost via ligninolytic and celluloxylanolytic activities. J Appl Microbiol 119(6):1584–1596

    Article  CAS  PubMed  Google Scholar 

  • Malafaia G, da Costa ED, Guimarães AT, de Araújo FG, Leandro WM, de Lima Rodrigues AS (2015) Vermicomposting of different types of tanning sludge (liming and primary) mixed with cattle dung. Ecol Eng 85:301–306

    Article  Google Scholar 

  • Maleki S, Hosseini SM, Zare S, Aghyani M, & Pour PG (2016) Effect of vermicompost substrates on amount of organic carbon, total nitrogen and carbon to nitrogen ratio. (September)

    Google Scholar 

  • Manaig ME (2016) Vermicomposting efficiency and quality of vermicompost with different bedding materials and worm food sources as substrate. 4(1):1–13

    Google Scholar 

  • Mazur-p A, Garczy M, Hajduk E, Kostecka J, & Butt KR (2021) Use of vermicompost from sugar beet pulp in cultivation of peas ( Pisum sativum L .). 1–11

    Google Scholar 

  • Mousavi SA, Sader SR, Farhadi F, Faraji M, Falahi F (2020) Vermicomposting of grass and newspaper waste mixed with cow dung using Eisenia fetida: physicochemical changes. 22(1):8–14

    Google Scholar 

  • Mupambwa HA, Mnkeni PNS (2018) Optimising the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilisers: a review. Environ Sci Pollut Res 25(11):10577–10595

    Article  Google Scholar 

  • Narayanan CM (2012) Production of phosphate-rich biofertiliser using vermicompost and anaerobic digestor sludge—a case study

    Google Scholar 

  • Ndegwa PM, Thompson SA (2001) Integrating composting and vermicomposting of the treatment and bioconversion of biosolids. Bioresearch Technol 76

    Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14(5):10197–10228

    Article  PubMed  PubMed Central  Google Scholar 

  • Olle M (2019) Vermicompost, its importance and benefit in agriculture. J Agric Sci 2:93–98. https://doi.org/10.15159/jas.19.19

    Article  Google Scholar 

  • Orozco FH, Cegarra J, Trujillo LM, Roig A (1996) Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biol Fertil Soils 22(1):162–166

    Article  Google Scholar 

  • Pattnaik S, Reddy MV (2010) Nutrient status of vermicompost of urban green waste processed by three earthworm species—Eisenia fetida, Eudriluseugeniae, and Perionyx excavatus. 2010. https://doi.org/10.1155/2010/967526

  • Pérez-Losada M, Ricoy M, Marshall JC, Domínguez J (2009) Phylogenetic assessment of the earthworm Aporrectodeacaliginosa species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 52(2):293–302. https://doi.org/10.1016/j.ympev.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  • Pettit RE (2006) Organic matter, humus, humate, humic acid, fulvic acid and humin. The Wonderful World of Humus and Carbon

    Google Scholar 

  • Phukan IK, Khanikar L, Ahmed CS, Safique S, Jahan A, Baruah A, Phukan I (2013) A novel method for improving the quality of vermicompost. Two a Bud 60:2

    Google Scholar 

  • Pilli K, Jaison M, Sridhar D (2019) Vermicomposting and its uses in sustainable agriculture. In: Sridhar D, Chandra B, Viswavidyalaya K (eds) Research trends in agriculture sciences. AkiNik Publications, pp 75–88

    Google Scholar 

  • Piotrowska-DÅ‚ugosz A (2020) Significance of the enzymes associated with soil C and N transformation. In Carbon and Nitrogen Cycling in Soil (pp. 399–437). Springer, Singapore

    Google Scholar 

  • Pop AA, Cech G, Wink M, Csuzdi C, Pop VV (2007) Application of 16S, 18S rDNA and COI sequences in the molecular systematics of the earthworm family Lumbricidae (Annelida, Oligochaeta). Eur J Soil Biol 43:S43–S52. https://doi.org/10.1016/j.ejsobi.2007.08.007

    Article  CAS  Google Scholar 

  • Pop AA, Wink M, Pop VV (2003) Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae). Pedobiologia 47(5–6):428–433. https://doi.org/10.1078/0031-4056-00208

    Article  CAS  Google Scholar 

  • Pramanik P, Ghosh GK, Ghosal PK, Banik P (2007) Changes in organic–C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresour Technol 98(13):2485–2494

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5. https://doi.org/10.1371/journal.pone.0009490

  • Purnawanto AM, Ahadiyat YR, Iqbal A (2020) The utilisation of mushroom waste substrate in producing vermicompost: the decomposer capacity of, and. Acta Technol Agric 23(2):99–104

    Google Scholar 

  • Rabari KV, Patel KM, Chaudhary HL (2020) Effect of rock phosphate enriched different organic manures and chemical fertilisers on growth and yield of wheat. Crop Res 55(1and2):6–9

    Google Scholar 

  • Rajiv KS, DalsukhV KC, Sunita A (2010) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. J Agric Biotechnol Sustain Dev 2(7):113–128

    Google Scholar 

  • Ramnarain YI, Ansari AA, Ori L (2018) Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. Int J Recycl Org Waste Agric 8(1):23–36. https://doi.org/10.1007/s40093-018-0225-7

    Article  Google Scholar 

  • Reddy SA, Bagyaraj DJ, Kale RD (2012) Management of tomato bacterial spot caused by Xanthomonas campestris using vermicompost. J Biopestic 5(1):10

    Google Scholar 

  • Rekha GS, Kaleena PK, Elumalai D, Srikumaran MP, Maheswari VN (2018) Effects of vermicompost and plant growth enhancers on the exo-morphological features of Capsicum annum (Linn.) Hepper. Int J Recycl Org Waste Agric 7(1):83–88

    Article  Google Scholar 

  • Rorat A, Wloka D, Grobelak A, Grosser A, Sosnecka A, Milczarek M, Kacprzak M (2017) Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. J Environ Manag 187:347–353

    Article  CAS  Google Scholar 

  • Rosado D, Pérez-Losada M, Aira M, Domínguez J (2021) Bacterial succession during vermicomposting of silver wattle (Acacia dealbata link). Microorganisms 10(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarma B, Farooq M, Gogoi N, Borkotoki B, Kataki R, Garg A (2018) Soil organic carbon dynamics in wheat-Green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilisers: a comparative study. J Clean Prod 201:471–480

    Article  CAS  Google Scholar 

  • Sharma A, Sharma A, Singh S, Vig PA, Nagpal AK (2021) Leaf litter vermi composting: converting waste to resource. IOP Conf Series: Earth Environ Sci 889:2021

    Google Scholar 

  • Shi Z, Liu J, Tang Z, Zhao Y, Wang C (2020) Vermiremediation of organically contaminated soils: concepts, current status, and future perspectives. Appl Soil Ecol 147:103377

    Article  Google Scholar 

  • Sim EYS, Wu TY (2010) The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting. J Sci Food Agric 90(13):2153–2162

    Article  CAS  PubMed  Google Scholar 

  • Simsek-Ersahin Y (2011) The use of vermicompost products to control plant diseases and pests. In Biology of earthworms (pp. 191–213). Springer, Berlin, Heidelberg

    Google Scholar 

  • Singh J, Kalamdhad AS (2013) Reduction of bioavailability and leachability of heavy metals during vermicomposting of water hyacinth. Environ Sci Pollut Res 20(12):8974–8985

    Article  CAS  Google Scholar 

  • Singh J, Kaur A, Vig AP, Rup PJ (2010) Role of Eisenia fetida in rapid recycling of nutrients from bio sludge of beverage industry. Ecotox Environ Safe 73(3):430–435

    Article  CAS  Google Scholar 

  • Singh WR, Kalamdhad AS (2016) Transformation of nutrients and heavy metals during vermicomposting of the invasive green weed Salvinia natans using Eisenia fetida. Int J Recycl Org Waste Agric 5(3):205–220

    Article  Google Scholar 

  • Sinha RK, Bharambe G, Chowdhary U (2008) Sewage treatment by vermi-filtration with synchronous treatment of sludge by earthworms: a low-cost sustainable technology over conventional systems with potential for decentralization. Environmentalist 28:409–420

    Article  Google Scholar 

  • Song X, Liu M, Wu D, Qi L, Ye C, Jiao J, Hu F (2014) Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Manage 34(11):1977–1983

    Article  CAS  Google Scholar 

  • Srivastava V, Squartini A, Masi A, Sarkar A, Singh RP (2021) Metabarcoding analysis of the bacterial succession during vermicomposting of municipal solid waste employing the earthworm Eisenia fetida. Sci Total Environ 766:144389

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman ISC, & Mohamad A (2020) The use of vermiwash and vermicompost extract in plant disease and pest control. In Natural Remedies for Pest, Disease and Weed Control (pp. 187–201). Academic Press

    Google Scholar 

  • Sun M, Chao H, Zheng X, Deng S, Ye M, Hu F (2020) Ecological role of earthworm intestinal bacteria in terrestrial environments: a review. Sci Total Environ 740:140008

    Article  CAS  PubMed  Google Scholar 

  • Suthar S (2009) Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligochaeta). J Hazard Mater 163(1):199–206

    Article  CAS  PubMed  Google Scholar 

  • Tabak MA, Norouzzadeh MS, Wolfson DW, Sweeney SJ, Vercauteren KC, Snow NP, Miller RS (2018) Machine learning to classify animal species in camera trap images: applications in ecology. Methods Ecol Evol. https://doi.org/10.1111/2041-210x.13120

  • Thakur IS, Medhi K (2019) Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: challenges and opportunities. Bioresour Technol 282:502–513

    Article  CAS  PubMed  Google Scholar 

  • Usmani Z, Rani R, Gupta P, & Prasad MNV (2020) Vermiremediation of agrochemicals. In Agrochemicals Detection, Treatment and Remediation. Butterworth-Heinemann, p 329–367

    Google Scholar 

  • Velmourougane KRK (2011) Chemical and microbiological changes during vermicomposting of coffee pulp using exotic ( Eudriluseugeniae ) and native earthworm ( Perionyx ceylanesis ) species. 497–507. https://doi.org/10.1007/s10532-010-9422-4

  • Vukovic A, Velki M, Ecimovic S, Vukovic R, Camagajevac IS, Loncaric Z (2021) Vermicomposting—facts, benefits and knowledge gaps. Agronomy 11(1952):1–15

    Google Scholar 

  • Wäldchen J, Mäder P (2018) Machine learning for image based species identification. Methods Ecol Evol. https://doi.org/10.1111/2041-210x.13075

  • Walkey A, Black IA (1934) An examination of Degtjaroff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  Google Scholar 

  • Wang H, Li H, Gilbert JA, Li H, Wu L, Liu M, Zhang Z (2015) Housefly larva vermicomposting efficiently attenuates antibiotic resistance genes in swine manure, with concomitant bacterial population changes. Appl Environ Microbiol 81(22):7668–7679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Han W, Wang X, Chen H, Zhu F, Wang X, Lei C (2017) Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresour Technol 245:411–418

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wang J, Yu Z, Amanze C, Shen L, Wu X, Zeng W (2022) Impact of bamboo sphere amendment on composting performance and microbial community succession in food waste composting. J Environ Manag 303:114144

    Article  CAS  Google Scholar 

  • Yatoo AM, Ali M, Baba ZA, Hassan B (2021) Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agron Sustain Dev 41(1):1–26

    Article  Google Scholar 

  • Zeb A, Li S, Wu J, Lian J, Liu W, Sun Y (2020) Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: a critical review of research progress and prospects. Sci Total Environ 740:140145

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Shen JP, Shu CL, Jin SS, Di HJ, Zhang LM, He JZ (2022) Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetiabrevitarsis and its fate in a soil-vegetable system. Sci Total Environ 807:150781

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerikias Marumure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marumure, J., Makuvara, Z., Gufe, C., Alufasi, R., Chigede, N., Karidzagundi, R. (2023). An Outstanding Perspective on Biological Dynamics in Vermicomposting Matrices. In: Mupambwa, H.A., Horn, L.N., Mnkeni, P.N.S. (eds) Vermicomposting for Sustainable Food Systems in Africa. Sustainability Sciences in Asia and Africa(). Springer, Singapore. https://doi.org/10.1007/978-981-19-8080-0_4

Download citation

Publish with us

Policies and ethics