Skip to main content

Theranostics Nanomaterials for Safe Cancer Treatment

  • Chapter
  • First Online:
Biomedical Applications and Toxicity of Nanomaterials

Abstract

The current advancement in diagnostic research by implementing nanotechnology encourages researchers worldwide to focus towards new possibilities of utilizing nano formulation for advanced imaging and diagnosis for cancer. This concept initiates the development of multimodal theranostic nanoparticles which has both therapy and diagnosis property in cancer treatment. The potential advantage of these theranostic nanoparticles over other nanoformulations they are highly efficient transporters and cargos both imaging and therapeutic agents as encapsulated and the intrinsic molecular property aiding effective diagnosis. This dual functional capacity of theranostic nano particles accounts their usage as personalized medicine. In this book chapter we tried to included details of various bio inspired theranostic nano particles and their application in cancer therapy. The contents covered are Bio-inspired nanoparticles used in cancer (Liposome, Lipid based theranostic nanoparticles (LNPs), Solid form lipid nanoparticles (SLNs), Lipid based Nano capsules (LNCs), Lipid-nano structure (NLCs), Lipid micelles), Protein based theranostic nanoparticles, Viral nanoparticles (VNPs), Oligonucleotide theranostic nanoparticles, Peptide theranostic nanoparticles. Whereas In-organic theranostic nanoparticles including Gold theranostic nanoparticles (AuNPs), Silver theranostic nanoparticles (AgNPs), Iron oxide nano particles

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbdElhamid AS, Zayed DG, Helmy MW, Ebrahim SM, Bahey-El-Din M, Zein-El-Dein EA, El-Gizawy SA, Elzoghby AO (2018) Lactoferrin-tagged quantum dots-based theranostic nanocapsules for combined COX-2 inhibitor/herbal therapy of breast cancer. Nanomedicine (Lond) 13(20):2637–2656

    Article  CAS  PubMed  Google Scholar 

  • Accardo A, Tesauro D, Aloj L, Tarallo L, Arra C, Mangiapia G, Vaccaro M, Pedone C, Paduano L, Morelli G (2008) Peptide containing aggregates as selective nanocarriers for therapeutics. ChemMedChem:594–602

    Google Scholar 

  • Accardo A, Salsano G, Morisco A, Aurilio M, Parisi A, Maione F, Cicala C, Tesauro D, Aloj L, De Rosa G, Morelli G (2012) Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent. Int J Nanomedicine 7:2007–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agemy L, Sugahara KN, Kotamraju VR, Gujraty K, Girard OM, Kono Y, Mattrey RF, Park J-H, Sailor MJ, Jimenez AI, Cativiela C, Zanuy D, Sayago FJ, Aleman C, Nussinov R, Ruoslahti E (2010) Nanoparticle-induced vascular blockade in human prostate cancer. Blood 116:2847–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM, Mattrey RF, Verma IM, Ruoslahti E (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci U S A 108(42):17,450–17,455

    Article  CAS  Google Scholar 

  • Al-Jamal WT, Al-Jamal KT, Tian B, Cakebread A, Halket JM, Kostarelos K (2009) Tumor targeting of functionalized quantum dot-liposome hybrids by intravenous administration. Mol Pharm 6(2):520–530

    Article  CAS  PubMed  Google Scholar 

  • Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64(2):190–199

    Article  CAS  PubMed  Google Scholar 

  • Alsalhi MS, Devanesan S, Alfuraydi AA, Vishnubalaji R, Munusamy MA, Murugan K, Nicoletti M, Benelli G (2016) Green synthesis of silver nanoparticles using Pimpinellaanisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells. Int J Nanomed 11:4439–4449

    Article  CAS  Google Scholar 

  • Andreou C, Pal S, Rotter L, Yang J, Kircher MF (2017) “Molecular Imaging in Nanotechnology and Theranostics” (MINT) interest group. Mol Imaging Biol 19(3):363

    Article  PubMed  PubMed Central  Google Scholar 

  • Arjunan N, Kumari HL, Singaravelu CM, Kandasamy R, Kandasamy J (2016) Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent. Int J Biol Macromol 92:77–87

    Article  CAS  PubMed  Google Scholar 

  • Austin LA, Mackey MA, Dreaden EC, El-Sayed MA (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88(7):1391–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae KH, Lee JY, Lee SH, Park TG, Nam YS (2013) Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv Healthc Mater 2(4):576–584

    Article  CAS  PubMed  Google Scholar 

  • Balzeau J, Pinier M, Berges R, Saulnier P, Benoit JP, Eyer J (2013) The effect of functionalizing lipid nanocapsules with NFL-TBS.40-63 peptide on their uptake by glioblastoma cells. Biomaterials 34(13):3381–3389

    Article  CAS  PubMed  Google Scholar 

  • Baskar G, Bikku George G, Chamundeeswari M (2016) Synthesis and characterization of asparaginase bound silver nanocomposite against ovarian cancer cell line A2780 and lung cancer cell line A549. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-016-0448-x

  • Belyanina I, Kolovskaya O, Zamay S, Gargaun A, Zamay T, Kichkailo A (2017) Targeted magnetic nanotheranostics of cancer. Molecules 22(6):975

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurent A. Bentolila, Yuval Ebenstein, Shimon Weiss. Quantum dots for in vivo small-animal imaging, J Nucl Med Apr 2009, 50 (4) 493–496;

    Google Scholar 

  • Bishop CJ, Tzeng SY, Green JJ (2015) Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater 11:393–403

    Article  CAS  PubMed  Google Scholar 

  • Blanco E, Kessinger CW, Sumer BD, Gao J (2009) Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med (Maywood) 234(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92(16):7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cainelli F, Vallone A (2009) Safety and efficacy of pegylated liposomal doxorubicin in HIV-associated Kaposi’s sarcoma. Biol Targets Ther 3:385

    Article  CAS  Google Scholar 

  • Castro Aceituno V, Ahn S, Simu SY, Wang C, Mathiyalagan R, Yang DC (2016) Silver nanoparticles from DendropanaxmorbiferaLéveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells. In Vitro Cell Dev Biol Anim 52(10):1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Shiah H, Chao T, Hsieh RK, Chen G, Chang J, Yeh G (2010) Phase I study of liposome irinotecan (PEP02) in combination with weekly infusion of 5-FU/LV in advanced solid tumors. J Clin Oncol 28(15_suppl):e13024

    Article  Google Scholar 

  • Chen Z, Penet MF, Nimmagadda S, Li C, Banerjee SR, Winnard PT Jr, Artemov D, Glunde K, Pomper MG, Bhujwalla ZM (2012a) PSMA-targeted theranostic nanoplex for prostate cancer therapy. ACS Nano 6(9):7752–7762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Leim Y, Chen X (2012b) Immunoassay for serum alpha-fetoprotein using silver nanoparticles and detection via resonance light scattering. Microchim Acta 179:241–248

    Article  CAS  Google Scholar 

  • Chen ML, He YJ, Chen XW, Wang JH (2013) Quantum-dot-conjugated graphene as a probe for simultaneous cancer-targeted fluorescent imaging, tracking, and monitoring drug delivery. Bioconjug Chem:387–397

    Google Scholar 

  • Chen Q, Wang C, Zhan Z, He W, Cheng Z, Li Y, Liu Z (2014) Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials 35(28):8206–8214

    Article  CAS  PubMed  Google Scholar 

  • Cheng S-H, Lee C-H, Chen M-C, Souris JS, Tseng F-G, Yang C-S, Mou C-Y, Chen C-T, Lo L-W (2010) Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy. J Mater Chem:6149–6157

    Google Scholar 

  • Conner JB, Bawa R, Nicholas JM, Weinstein V (2014) Copaxone in the era of biosimilars and nanosimilars. In: Handbook of clinical nanomedicine-from bench too bedside. Pan Stanford Publishing Pte Ltd., Singapore, pp 1–31

    Google Scholar 

  • Datta A, Hooker JM, Botta M, Francis MB, Aime S, Raymond KN (2008) High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: nanosized MRI contrast agents. J Am Chem Soc 130(8):2546–2552

    Article  CAS  PubMed  Google Scholar 

  • David S, Passirani C, Carmoy N, Morille M, Mevel M, Chatin B et al (2013) DNA nanocarriers for systemic administration: characterization and in vivo bioimaging in healthy mice. Mol Ther Nucleic Acids:e64

    Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devalapally H, Shenoy D, Little S, Langer R, Amiji M (2007) Poly (ethylene oxide)-modified poly (beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother Pharmacol 59(4):477–484

    Article  CAS  PubMed  Google Scholar 

  • Dobiasch S, Szanyi S, Kjaev A, Werner J, Strauss A, Weis C, Grenacher L, Kapilov-Buchman K, Israel LL, Lellouche JP, Locatelli E (2016) Synthesis and functionalization of protease-activated nanoparticles with tissue plasminogen activator peptides as targeting moiety and diagnostic tool for pancreatic cancer. J Nanobiotechnol 14(1):1–8

    Article  Google Scholar 

  • El-Sherbiny IM, Salih E, Yassin AM, Elsayed EH (2016) Newly developed chitosan-silver hybrid nanoparticles: biosafety and apoptosis induction in HepG2 cells. J Nanopart Res 18:172

    Article  Google Scholar 

  • Feng L, Gao M, Tao D, Chen Q, Wang H, Dong Z et al (2016) Cisplatin-prodrug-constructed liposomes as a versatile Theranostic nanoplatform for bimodal Imaging guided combination cancer therapy. Adv Func Mater:2207–2217

    Google Scholar 

  • Feng L, Cheng L, Dong Z, Tao D, Barnhart TE, Cai W, Chen M, Liu Z (2017) Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic Tumors post-photodynamic therapy. ACS Nano 11(1):927–937

    Article  CAS  PubMed  Google Scholar 

  • Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62(2):126–143

    Article  CAS  PubMed  Google Scholar 

  • Flexman JA, Cross DJ, Lewellen BL, Miyoshi S, Kim Y, Minoshima S (2008) Magnetically targeted viral envelopes: a PET investigation of initial biodistribution. IEEE Trans Nanobioscience 7(3):223–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianella A, Jarzyna PA, Mani V, Ramachandran S, Calcagno C, Tang J, Kann B, Dijk WJ, Thijssen VL, Griffioen AW, Storm G, Fayad ZA, Mulder WJ (2011) Multi-functional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano 5(6):4422–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Angulo AM, Meric-Bernstam F, Chawla S, Falchook G, Hong D, Akcakanat A, Chen H, Naing A, Fu S, Wheler J, Moulder S, Helgason T, Li S, Elias I, Desai N, Kurzrock R (2013) Weekly nab-rapamycin in patients with advanced nonhematologic malignancies: final results of a phase I trial. Clin Cancer Res 19(19):5474–5484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7(8):1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Guthi JS, Yang SG, Huang G, Li S, Khemtong C, Kessinger CW, Peyton M, Minna JD, Brown KC, Gao J (2010) MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm 7(1):32–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H (2010) EGFRvIII antibody–conjugated iron oxide nanoparticles for magnetic resonance imaging–guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70(15):6303–6312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Haun JB, Yoon TJ, Lee H, Weissleder R (2010) Magnetic nanoparticle biosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(3):291–304

    Article  CAS  PubMed  Google Scholar 

  • He X, Na MH, Kim JS, Lee GY, Park JY, Hoffman AS, Nam JO, Han SE, Sim GY, Oh YK, Kim IS, Lee BH (2011) A novel peptide probe for imaging and targeted delivery of liposomal doxorubicin to lung tumor. Mol Pharm 8(2):430–438

    Article  CAS  PubMed  Google Scholar 

  • Hsu SH, Wen CJ, Al-Suwayeh SA, Huang YJ, Fang JY (2013) Formulation design and evaluation of quantum dot-loaded nanostructured lipid carriers for integrating bioimaging and anticancer therapy. Nanomedicine (Lond) 8(8):1253–1269

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Yong KT, Roy I, Ding H, Law WC, Cai H, Zhang X, Vathy LA, Bergey EJ, Prasad PN (2010) Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging. Nanotechnology 21(14):145105

    Article  PubMed  Google Scholar 

  • Huynh NT, Passirani C, Saulnier P, Benoit JP (2009) Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 379(2):201–209

    Article  CAS  PubMed  Google Scholar 

  • Jang SJ, Yang IJ, Tettey CO, Kim KM, Shin HM (2016) In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mater Sci Eng C Mater Biol Appl 68:430–435

    Article  CAS  PubMed  Google Scholar 

  • Jin R, Lin B, Li D, Ai H (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27

    Article  CAS  PubMed  Google Scholar 

  • Khandhar AP, Ferguson RM, Arami H, Krishnan KM (2013) Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials 34(15):3837–3845. https://doi.org/10.1016/j.biomaterials.2013.01.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khlebtsov BN, Tuchina ES, Khanadeev VA, Panfilova EV, Petrov PO, Tuchin VV, Khlebtsov NG (2013) Enhanced photoinactivation of staphylococcus aureus with nanocomposites containing plasmonic particles and hematoporphyrin. J Biophotonics 6:338–351

    Article  CAS  PubMed  Google Scholar 

  • Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10(11):3708–3716

    Article  CAS  PubMed  Google Scholar 

  • Kuang Y, Zhang K, Cao Y, Chen X, Wang K, Liu M, Pei R (2017) Hydrophobic IR-780 dye encapsulated in cRGD-conjugated solid lipid Nanoparticles for NIR imaging-guided photothermal therapy. ACS Appl Mater Interfaces 9(14):12217–12226

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Yigit M, Dai G, Moore A, Medarova Z (2010) Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 70(19):7553–7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuppusamy P, Ichwan SJ, Al-Zikri PN, Suriyah WH, Soundharrajan I, Govindan N, Maniam GP, Yusoff MM (2016) In vitro anticancer activity of Au, Ag Nanoparticles synthesized using Commelinanudiflora L. aqueous extract against HCT-116 colon cancer cells. Biol Trace Elem Res 173(2):297–305

    Article  CAS  PubMed  Google Scholar 

  • Lamichhane N, Udayakumar TS, D'Souza WD, Simone CB 2nd, Raghavan SR, Polf J, Mahmood J (2018) Liposomes: clinical applications and potential for image-guided drug delivery. Molecules 23(2):288

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci 166:8–23

    Article  CAS  Google Scholar 

  • Ledet G, Mandal TK (2012) Nanomedicine: emerging therapeutics for the 21st century. US pharm 37(3):7–11

    Google Scholar 

  • Lee S, Ryu JH, Park K, Lee A, Lee SY, Youn IC, Ahn CH, Yoon SM, Myung SJ, Moon DH, Chen X (2009) Polymeric nanoparticle-based activatable near-infrared nanosensor for protease determination in vivo. Nano Lett 9(12):4412–4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Tang X, Pulli B, Lin C, Zhao P, Cheng J, Lv Z, Yuan X, Luo Q, Cai H, Ye M (2014) Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. Int J Nanomed 9:3347–3361

    Google Scholar 

  • Li H, Wang K, Yang X, Zhou Y, Ping Q, Oupicky D, Sun M (2017) Dual-function nanostructured lipid carriers to deliver IR780 for breast cancer treatment: anti-metastatic and photothermal antitumor therapy. Acta Biomater 53:399–413

    Article  CAS  PubMed  Google Scholar 

  • Li S, Shen X, Xu QH, Cao Y (2019) Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy. Nanoscale 2019:19,551–19,560

    Article  Google Scholar 

  • Libutti SK, Paciotti GF, Byrnes AA, Alexander HR Jr, Gannon WE, Walker M, Seidel GD, Yuldasheva N, Tamarkin L (2010) Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 16(24):6139–6149. https://doi.org/10.1158/1078-0432.CCR-10-0978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Zhong Z, Lok MC, Jiang X, Hennink WE, Feijen J, Engbersen JF (2007) Novel bioreducible poly(amido amine)s for highly efficient gene delivery. Bioconjug Chem 18(1):138–145

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Blaauboer CJ, Timoneda MM et al (2008) Bioreducible poly(amido amine)s with oligoamine side chains: synthesis, characterization, and structural effects on gene delivery. J Control Release 126(2):166–174

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Jin CS, Huang H, Ding L, Zhang Z, Chen J, Zheng G (2014) Nanoparticle-enabled, image-guided treatment planning of target specific RNAi therapeutics in an orthotopic prostate cancer model. Small 10(15):3072–3082

    Article  CAS  PubMed  Google Scholar 

  • Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multi-functional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YL, Zhu J, Weng GJ, Li JJ, Zhao JW (2020) Gold nanotubes: synthesis, properties and biomedical applications. Mikrochim Acta 187:612

    Article  CAS  PubMed  Google Scholar 

  • Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Protein Nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int 2014:180549

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes RM, Gaspar MM, Pereira J, Eleutério CV, Carvalheiro M, Almeida AJ et al (2014) Liposomes versus lipid nanoparticles: comparative study of lipid-based systems as oryzalin carriers for the treatment of leishmaniasis. J Biomed Nanotechnol:3647–3657. https://doi.org/10.1166/jbn.2014.1874

  • Lucas LJ, Tellez C, Castilho ML, Lee CLD, Hupman MA, Vieira LS et al (2015) Development of a sensitive, stable and EGFR-specific molecular imaging agent for surface enhanced Raman spectroscopy. J Raman Spectrosc 46:434–446

    Article  CAS  Google Scholar 

  • Ma M, Hao Y, Liu N et al (2012) A novel lipid-based nanomicelle of docetaxel: evaluation of antitumor activity and biodistribution. Int J Nanomed 7:3389–3398

    Article  CAS  Google Scholar 

  • Ma N, Wu FG, Zhang X, Jiang YW, Jia HR, Wang HY, Li YH, Liu P, Gu N, Chen Z (2017) Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy: comparison of gold nanoparticles, nanospikes, and nanorods. ACS Appl Mater Interfaces 9(15):13037–13048

    Article  CAS  PubMed  Google Scholar 

  • Mangadlao JD, Wang X, McCleese C, Escamilla M, Ramamurthy G, Wang Z, Govande M, Basilion JP, Burda C (2018) Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer. ACS Nano 12(4):3714–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-González R, Estelrich J, Busquets MA (2016) Liposomes loaded with hydrophobic iron oxide Nanoparticles: suitable T2 contrast agents for MRI. Int J Mol Sci 17(8):1209

    Article  PubMed  PubMed Central  Google Scholar 

  • Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 12:5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur P, Sathishkumar K, Chaturvedi M, Das P, Sudarshan KL, Santhappan S, Nallasamy V, John A, Narasimhan S, Roselind FS, ICMR-NCDIR-NCRP Investigator Group (2020) Cancer statistics, 2020: report from national cancer registry programme, India. JCO Global Oncol 6:1063–1075

    Article  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  • Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47(2–3):165–196

    Article  CAS  PubMed  Google Scholar 

  • Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009a) Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomedicine 4:99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009b) Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomed 4:99–105

    CAS  Google Scholar 

  • Mittal AK, Tripathy D, Choudhary A, Aili PK, Chatterjee A, Singh IP, Banerjee UC (2015) Bio-synthesis of silver nanoparticles using Potentilla fulgens wall. Ex hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater Sci Eng C Mater Biol Appl 53:120–127

    Article  CAS  PubMed  Google Scholar 

  • Mok H, Veiseh O, Fang C, Kievit FM, Wang FY, Park JO, Zhang M (2010) pH-sensitive siRNA nanovector for targeted gene silencing and cytotoxic effect in cancer cells. Mol Pharm 7(6):1930–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel S, Terreno E, Ugazio E, Aime S, Gasco MR (1998) NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium(III) complexes. Eur J Pharm Biopharm 45(2):157–163

    Article  CAS  PubMed  Google Scholar 

  • Morille M, Montier T, Legras P, Carmoy N, Brodin P, Pitard B, Benoît JP, Passirani C (2010) Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials 31(2):321–329

    Article  CAS  PubMed  Google Scholar 

  • Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59(3):521–529

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SM, Zarei M, Hashemi SA, Ramakrishna S, Chiang WH, Lai CW, Gholami A (2020) Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab Rev 52(2):299–318

    Article  CAS  PubMed  Google Scholar 

  • Muhammad Z, Raza A, Ghafoor S, Naeem A, Naz SS, Riaz S, Ahmed W, Rana NF (2016) PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur J Pharm Sci 91:251–255

    Article  CAS  PubMed  Google Scholar 

  • Murphy EA, Majeti BK, Barnes LA, Makale M, Weis SM, Lutu-Fuga K, Wrasidlo W, Cheresh DA (2008) Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci U S A 105(27):9343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussi SV, Torchilin VP (2013) Recent trends in the use of lipidic nanoparticles as pharmaceutical carriers for cancer therapy and diagnostics. J Mater Chem B:5201–5209

    Google Scholar 

  • Nakkala JR, Mata R, Bhagat E, Sadras SR (2015) Green synthesis of silver and gold nanoparticles from Gymnemasylvestre leaf extract: study of antioxidant and anticancer activities. J Nanopart Res 17:151

    Article  Google Scholar 

  • Nezhadi SH, Choong PF, Lotfipour F, Dass CR (2009) Gelatin-based delivery systems for cancer gene therapy. J Drug Target 17(10):731–738

    Article  CAS  PubMed  Google Scholar 

  • Obliosca JM, Liu C, Yeh HC (2013) Fluorescent silver nanoclusters as DNA probes. Nanoscale:8443–8461

    Google Scholar 

  • Olerile LD, Liu Y, Zhang B et al (2017) Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf B Biointerfaces 150:121–130

    Article  CAS  PubMed  Google Scholar 

  • Pandurangan M, Enkhtaivan G, Venkitasamy B, Mistry B, Noorzai R, Jin BY, Kim DH (2016a) Time and concentration-dependent therapeutic potential of silver Nanoparticles in cervical carcinoma cells. Biol Trace Elem Res 170(2):309–319

    Article  CAS  PubMed  Google Scholar 

  • Pandurangan M, Nagajyothi PC, Kim DH, Jung M-J, Shim J, Eom I-Y (2016b) Green synthesis and characterization of biologically active silver nanoparticles using Perilla frutescens leaf extract. J Clust Sci 28:81–90

    Article  Google Scholar 

  • Pansare VJ, Hejazi S, Faenza WJ, Prud'homme RK (2012) Review of long-wavelength optical and NIR Imaging materials: contrast agents, fluorophores, and multi-functional Nano carriers. Chem Mater:812–827

    Google Scholar 

  • Parveen A, Rao S (2015) Cytotoxicity and genotoxicity of biosynthesized gold and silver nanoparticles on human cancer cell lines. J Clust Sci 26:775_788

    Article  Google Scholar 

  • Patra CR, Mukherjee S, Kotcherlakota R (2014) Biosynthesized silver nanoparticles: a step forward for cancer theranostics? Nanomedicine (Lond):1445–1448

    Google Scholar 

  • Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR (2015) Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C Mater Biol Appl 53:298–309

    Article  CAS  PubMed  Google Scholar 

  • Petersen AL, Hansen AE, Gabizon A, Andresen TL (2012) Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 64:1417–1435

    Article  CAS  PubMed  Google Scholar 

  • Philippi C, Loretz B, Schaefer UF, Lehr CM (2010) Telomerase as an emerging target to fight cancer—opportunities and challenges for nanomedicine. J Control Release 146(2):228–240

    Article  CAS  PubMed  Google Scholar 

  • Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Humm J, Gönen M, Kalaigian H, Schöder H, Strauss HW (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6(260):260ra149

    Article  PubMed  PubMed Central  Google Scholar 

  • Portnoy E, Nizri E, Golenser J, Shmuel M, Magdassi S, Eyal S (2015) Imaging the urinary pathways in mice by liposomal indocyanine green. Nanomedicine:1057–1064

    Google Scholar 

  • Raghav R, Srivastava S (2015) Core_shellgold_silver nanoparticles based impedimetric immunosensor for cancer antigen CA125. Sens Actuator B Chem 220:557–564

    Article  CAS  Google Scholar 

  • Rajora MA, Ding L, Valic M et al (2017) Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma [published correction appears in Chem Sci. 2017 Aug 1;8(8):5803]. Chem Sci 8(8):5371–5384. https://doi.org/10.1039/c7sc00732a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos J, Rege K (2013) Poly(aminoether)-gold nanorod assemblies for shRNA plasmid-induced gene silencing. Mol Pharm 10(11):4107–4119

    Article  CAS  PubMed  Google Scholar 

  • Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo YE, Woolliscroft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R, Rehemtulla A, Ross BD (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res:6677–6686

    Google Scholar 

  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods:763

    Google Scholar 

  • Richards JMJ, Shaw CA, Lang NN, Williams MC, Semple SIK, MacGillivray TJ et al (2012) In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide. Circ Cardiovasc Imaging 5:509–517

    Article  PubMed  Google Scholar 

  • Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL, et al. Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990;323(9):570–578

    Google Scholar 

  • Rowe MD, Thamm DH, Kraft SL, Boyes SG (2009) Polymer-modified gadolinium metal-organic framework nanoparticles used as multi-functional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules:983–993

    Google Scholar 

  • Salazar-García S, Silva-Ramírez AS, Ramirez-Lee MA, Hernandez HR, Rangel-Lopez E, Castillo CG et al (2015) Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs). J Nanopart Res 17:450

    Article  Google Scholar 

  • Shay JW, Zou Y, Hiyama E, Wright WE (2001) Telomerase and cancer. Hum Mol Genet 10(7):677–685

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Kim HC, Wolfram J, Mu C, Zhang W, Liu H, Xie Y, Mai J, Zhang H, Li Z, Guevara M, Mao ZW, Shen H (2017) A liposome encapsulated ruthenium polypyridine complex as a Theranostic platform for triple-negative breast cancer. Nano Lett 17(5):2913–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuhendler AJ, Prasad P, Leung M, Rauth AM, Dacosta RS, Wu XY (2012) A novel solid lipid nanoparticle formulation for active targeting to tumor α(v) β(3) integrin receptors reveals cyclic RGD as a double-edged sword. Adv Healthc Mater 1(5):600–608

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Steinmetz NF (2015) Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(5):708–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi KS, Rahman A u, Husen A (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett:498

    Google Scholar 

  • Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, Jemal A (2017) Colorectal cancer statistics, 2017. CA Cancer J Clin 67(3):177–193

    Article  PubMed  Google Scholar 

  • Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C (2019) Current trends in cancer Nanotheranostics: metallic, polymeric, and lipid-based systems. Pharmaceutics 11(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman JA, Deitcher SR (2013) Marqibo®(vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 71(3):555–564

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I (2018) Gold Nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19(7):1979

    Article  PubMed  PubMed Central  Google Scholar 

  • Souto EB, Almeida AJ, Müller RH (2007) Lipid Nanoparticles (SLN®, NLC®) for cutaneous drug delivery: structure, protection and skin effects. J Biomed Nanotechnol:317–331

    Google Scholar 

  • Sreekanth TVM, Pandurangan M, Jung MJ, Lee YR, Eom I-Y (2016a) Ecofriendlydecoration of graphene oxide with green synthesized silver nanoparticles: cytotoxic activity. Res Chem Intermed 42:5665–5676

    Article  CAS  Google Scholar 

  • Sreekanth TVM, Pandurangan M, Kim DH, Lee YR (2016b) Greensynthesis:in-vitro anticancer activity of silver nanoparticles on human cervical cancer cells. J Clust Sci 27:671–681

    Article  CAS  Google Scholar 

  • Steinmetz NF (2010 Oct) Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine 6(5):634–641

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman GM, Hussien HT, Saleem MMNM (2015) Biosynthesis of silver nanoparticles synthesized by aspergillus flavus and their antioxidant, antimicrobial and cytotoxicity properties. Bull Mater Sci 38:639–644

    Article  CAS  Google Scholar 

  • Sunshine JC, Peng DY, Green JJ (2012) Uptake and transfection with polymeric nanoparticles are dependent on polymer end-group structure, but largely independent of nanoparticle physical and chemical properties. Mol Pharm 9(11):3375–3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swierczewska M, Lee S, Chen X (2011) Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging 10(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Takakura Y, Fujita T, Hashida M, Sezaki H (1990) Disposition characteristics of macromolecules in tumor-bearing mice. Pharm Res 7(4):339–346

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Xue J, Xu B, Shen D, Sudlow GP, Achilefu S (2015) Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging. ACS Nano 9(1):220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WL, Tang WH, Li SD (2018) Cancer theranostic applications of lipid-based nanoparticles. Drug Discov Today 23(5):1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Torti SV, Torti FM (2019) Winning the war with iron. Nat Nanotechnol 14:499–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran S, DeGiovanni PJ, Piel B, Rai P (2017) Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 6(1):1–21

    Article  Google Scholar 

  • Tsai LC, Hsieh HY, Lu KY, Wang SY, Mi FL (2016) EGCG/gelatin-doxorubicin gold nanoparticles enhance therapeutic efficacy of doxorubicin for prostate cancer treatment. Nanomedicine (Lond) 11(1):9–30

    Article  CAS  PubMed  Google Scholar 

  • Tudose M, Culita DC, Musuc AM, Marinescu G, Somacescu S, Munteanu C et al (2016) Multi-functional silver nanoparticles-decorated silica functionalized with retinoic acid with antiproliferative and antimicrobial properties. J Inorg Organomet Polym 26:1043–1052

    Article  CAS  Google Scholar 

  • Vidal C, Tomas-Gamasa M, Destito P, Lopez F, Mascarenas JL (2018) Concurrent and orthogonal gold(I) and ruthenium(II) catalysis inside living cells. Nat Commun 2018:1913

    Article  Google Scholar 

  • Videira MA, Botelho MF, Santos AC, Gouveia LF, de Lima JJ, Almeida AJ (2002) Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J Drug Target 10(8):607–613

    Article  CAS  PubMed  Google Scholar 

  • Videira MA, Gano L, Santos C, Neves M, Almeida AJ (2006) Lymphatic uptake of lipid nanoparticles following endotracheal administration. J Microencapsul 23(8):855–862

    Article  CAS  PubMed  Google Scholar 

  • Videira M, Almeida AJ, Fabra A (2012) Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine 8(7):1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69(9):3892–3900

    Article  PubMed Central  Google Scholar 

  • Von Maltzahn G, Park JH, Lin KY, Singh N, Schwöppe C, Mesters R, Berdel WE, Ruoslahti E, Sailor MJ, Bhatia SN (2011) Nanoparticles that communicate in vivo to amplify tumor targeting. Nat Mater:545–552

    Google Scholar 

  • Wang Q, Chao YM (2018) Multi-functional quantum dots and liposome complexes in drug delivery. J Biomed Res 32(2):91–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang Y, Zhang L, Miron RJ, Liang J, Shi M et al (2018) Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections. Adv Mater 2018:e1804023

    Article  Google Scholar 

  • Weber J, Beard PC, Bohndiek SE (2016) Contrast agents for molecular photoacoustic imaging. Nat Methods 13(8):639–650

    Article  CAS  PubMed  Google Scholar 

  • Wen AM, Lee KL, Yildiz I, Bruckman MA, Shukla S, Steinmetz NF (2012) Viral nanoparticles for in vivo tumor imaging. J Vis Exp (69):e4352

    Google Scholar 

  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    Article  CAS  PubMed  Google Scholar 

  • Wissing SA, Kayser O, Müller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56(9):1257–1272

    Article  CAS  PubMed  Google Scholar 

  • Wozniak A, Malankowska A, Nowaczyk G, Grzeskowiak BF, Tusnio K, Slomski R et al (2017) Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med 28:92

    Article  PubMed  Google Scholar 

  • Wu XL, Kim JH, Koo H, Bae SM, Shin H, Kim MS, Lee B-H, Park R-W, Kim I-S, Choi K, Kwon IC, Kim K, Lee DS (2010) Tumor-targeting peptide conjugated pH responsive micelles as a potential drug carrier for cancer therapy. Bioconjug Chem:208–213

    Google Scholar 

  • Xia W, Lin C (2012) Bioreducible polymer-delivered siRNA targeting human telomerase reverse transcriptase for human cancer gene therapy. Ther Deliv 3(4):439–442

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q et al (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44:914–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Hong H, Javadi A, Engle JW, Xu W, Yang Y, Zhang Y, Barnhart TE, Cai W, Gong S (2012) Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials 33(11):3071–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing J, Liu D, Zhou G et al (2018) Liposomally formulated phospholipid-conjugated novel near-infrared fluorescence probe for particle size effect on cellular uptake and biodistribution in vivo. Colloids Surf B Biointerfaces 161:588–596

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Cheng L, Wang C, Ma X, Li Y, Liu Z (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32(35):9364–9373

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Wang F, Qin W, Yang X, Yuan J (2014) Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomedicine 9:1347–1365

    Article  PubMed  PubMed Central  Google Scholar 

  • Yildiz T, Gu R, Zauscher S, Betancourt T (2018) Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Int J Nanomedicine 13:6961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ (2011) Investigation of gold and silver nanoparticles on absorption heating and scattering imaging. Plasmonics:393–397

    Google Scholar 

  • Zhang Q, Yang M, Zhu Y, Mao C (2018) Metallic nanoclusters for cancer imaging and therapy. Curr Med Chem 25(12):1379–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JY, Cui R, Zhang ZL, Zhang M, Xie ZX, Pang DW (2014) Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters. Nanoscale:13126–13134

    Google Scholar 

  • Zhen Z, Tang W, Guo C, Chen H, Lin X, Liu G, Fei B, Chen X, Xu B, Xie J (2013a) Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against cancer. ACS Nano 7(8):6988–6996

    Article  CAS  PubMed  Google Scholar 

  • Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J (2013b) RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7(6):4830–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Liu F, Ma L, Liu D, Wang Z (2013) Nanoparticle-based systems for t1-weighted magnetic resonance imaging contrast agents. Int J Mol Sci 14(5):10,591–10,607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sakthi Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pillai, S.C., Anirudhan, A., Kumar, D.S. (2023). Theranostics Nanomaterials for Safe Cancer Treatment. In: Mohanan, P.V., Kappalli, S. (eds) Biomedical Applications and Toxicity of Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7834-0_5

Download citation

Publish with us

Policies and ethics