Skip to main content

Tissue Engineering and Regenerative Medicine in Hypospadias Management

  • Chapter
  • First Online:
Hypospadiology

Abstract

Over the past 40 years, hypospadias research has focused on the development of novel surgical procedures, including new suture types and uses of autologous tissue harvested from local and distant sites. Although postoperative outcomes have steadily improved over time, complication rates remain extremely high, particularly in cases of severe hypospadias. Even for patients with good outcomes early after surgery, little is known about long-term prognosis due to the paucity of longitudinal follow-up data beyond the adolescent period.

Key challenges include persistently high complication rates after hypospadias surgery, dissatisfaction with functional and cosmetic outcomes, and uncertainty regards the long-term behavior of transplanted tissue under the influence of hormonal changes. Consequently, it is now a priority to advance our understanding of the tissues involved and how these are modified by hypospadias surgery. Greater comprehension of tissue characteristics may lead to new methods of promoting wound healing and improving surgical outcomes, while also paving the way for tissue engineering approaches capable of restoring urethral structure and function.

The purpose of this chapter is to provide urologists and researchers with an overview of recent advances in tissue engineering and regenerative medicine that have particular relevance to hypospadias research and clinical care. We discuss a range of novel concepts and pilot studies that may indicate future opportunities to enhance urethral function, refine cosmetic outcomes, and improve the quality of life for hypospadias patients. (See Video 9.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas T, McCarthy L. Foreskin and penile problems in childhood. Surgery (Oxford). 2016;34(5):221–5.

    Article  Google Scholar 

  2. Abbas TO. An objective hypospadias classification system. J Pediatr Urol. 2022;18(4):481-e1.

    Article  PubMed  Google Scholar 

  3. Spinoit AF, et al. Fertility and sexuality issues in congenital lifelong urology patients: male aspects. World J Urol. 2021;39(4):1013–9.

    Article  PubMed  Google Scholar 

  4. Bethell GS, et al. Parental decisional satisfaction after hypospadias repair in the United Kingdom. J Pediatr Urol. 2020;16(2):164 e1–7.

    Article  PubMed  Google Scholar 

  5. Keays MA, Dave S. Current hypospadias management: diagnosis, surgical management, and long-term patient-centred outcomes. Can Urol Assoc J. 2017;11(1–2 Suppl):S48–53.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Rustad KC, et al. Strategies for organ level tissue engineering. Organogenesis. 2010;6(3):151–7.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Lanza R, et al. Principles of tissue engineering. 5th ed. Amsterdam: Elsevier; 2020. p. 1678.

    Google Scholar 

  8. Atala A, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.

    Article  PubMed  Google Scholar 

  9. Joseph DB, et al. Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida. J Urol. 2014;191(5):1389–95.

    Article  CAS  PubMed  Google Scholar 

  10. Sloff M, et al. Tissue engineering of the bladder—reality or myth? A systematic review. J Urol. 2014;192(4):1035–42.

    Article  PubMed  Google Scholar 

  11. Abbas TO, Yalcin HC, Pennisi CP. From acellular matrices to smart polymers: degradable scaffolds that are transforming the shape of urethral tissue engineering. Int J Mol Sci. 2019;20(7):1763.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. de Graaf P, et al. The multilayered structure of the human corpus spongiosum. Histol Histopathol. 2018;33(12):1335–45.

    PubMed  Google Scholar 

  13. Masri C, et al. Experimental characterization and constitutive modeling of the biomechanical behavior of male human urethral tissues validated by histological observations. Biomech Model Mechanobiol. 2018;17(4):939–50.

    Article  CAS  PubMed  Google Scholar 

  14. Ottenhof SR, et al. Architecture of the corpus spongiosum: an anatomical study. J Urol. 2016;196:919–25.

    Article  PubMed  Google Scholar 

  15. van Velthoven MJJ, et al. Gel casting as an approach for tissue engineering of multilayered tubular structures. Tissue Eng Part C Methods. 2020;26(3):190–8.

    Article  PubMed  Google Scholar 

  16. Abbas TO, et al. Current status of tissue engineering in the management of severe hypospadias. Front Pediatr. 2017;5:283.

    Article  PubMed  Google Scholar 

  17. Versteegden LRM, et al. Tissue engineering of the urethra: a systematic review and meta-analysis of preclinical and clinical studies. Eur Urol. 2017;72(4):594–606.

    Article  PubMed  Google Scholar 

  18. Casarin M, Morlacco A, Dal Moro F. Tissue engineering and regenerative medicine in pediatric urology: urethral and urinary bladder reconstruction. Int J Mol Sci. 2022;23(12):6360.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. el-Kassaby A, AbouShwareb T, Atala A. Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. J Urol. 2008;179(4):1432–6.

    Article  PubMed  Google Scholar 

  20. le Roux PJ. Endoscopic urethroplasty with unseeded small intestinal submucosa collagen matrix grafts: a pilot study. J Urol. 2005;173(1):140–3.

    Article  PubMed  Google Scholar 

  21. Abbas TO, Ali TA, Uddin S. Urine as a main effector in urological tissue engineering—a double-edged sword. Cell. 2020;9(3):538.

    Article  CAS  Google Scholar 

  22. Bhat A, et al. Comparison of variables affecting the surgical outcomes of tubularized incised plate urethroplasty in adult and pediatric hypospadias. J Pediatr Urol. 2016;12(2):108.e1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Yiee JH, Baskin LS. Penile embryology and anatomy. Sci World J. 2010;10:1174–9.

    Article  Google Scholar 

  24. Feng C, et al. Reconstruction of three-dimensional neourethra using lingual keratinocytes and corporal smooth muscle cells seeded acellular corporal spongiosum. Tissue Eng Part A. 2011;17(23–24):3011–9.

    Article  CAS  PubMed  Google Scholar 

  25. Feng C, et al. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction. J Biomed Mater Res A. 2010;94(1):317–25.

    Article  PubMed  Google Scholar 

  26. de Vocht D, et al. A systematic review on cell-seeded tissue engineering of penile corpora. J Tissue Eng Regen Med. 2017;12(3):687–94.

    Article  PubMed  Google Scholar 

  27. Kajbafzadeh AM, et al. Future prospects for human tissue engineered urethra transplantation: decellularization and recellularization-based urethra regeneration. Ann Biomed Eng. 2017;45(7):1795–806.

    Article  PubMed  Google Scholar 

  28. Caplan AL, et al. The ethics of penile transplantation: preliminary recommendations. Transplantation. 2017;101(6):1200–5.

    Article  PubMed  Google Scholar 

  29. Chen MY, et al. Current applications of three-dimensional printing in urology. BJU Int. 2020;125(1):17–27.

    Article  PubMed  Google Scholar 

  30. Mouser VHM, et al. Three-dimensional bioprinting and its potential in the field of articular cartilage regeneration. Cartilage. 2017;8(4):327–40.

    Article  PubMed  Google Scholar 

  31. Williams C, et al. Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering. Acta Biomater. 2015;14:84–95.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang K, et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 2017;50:154–64.

    Article  CAS  PubMed  Google Scholar 

  33. Lee A, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365(6452):482–7.

    Article  CAS  PubMed  Google Scholar 

  34. Bernal PN, et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater. 2019;31(42):e1904209.

    Article  PubMed  Google Scholar 

  35. Kajbafzadeh AM, et al. In vivo human corpus cavernosum regeneration: fabrication of tissue-engineered corpus cavernosum in rat using the body as a natural bioreactor. Int Urol Nephrol. 2017;49(7):1193–9.

    Article  CAS  PubMed  Google Scholar 

  36. Khorramirouz R, et al. Application of omentum as an in vivo bioreactor for regeneration of decellularized human internal mammary artery. J Biomed Mater Res A. 2017;105(10):2685–93.

    Article  CAS  PubMed  Google Scholar 

  37. Roelofs LAJ, et al. Bladder regeneration using multiple acellular scaffolds with growth factors in a bladder. Tissue Eng Part A. 2018;24(1–2):11–20.

    Article  CAS  PubMed  Google Scholar 

  38. Smits AIPM, Bouten CVC. Tissue engineering meets immunoengineering: prospective on personalized in situ tissue engineering strategies. Curr Opin Biomed Eng. 2018;6:17–26.

    Article  Google Scholar 

  39. Zhang Y, et al. Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 2008;180(5):2226–33.

    Article  CAS  PubMed  Google Scholar 

  40. Leung CM, et al. A guide to the organ-on-a-chip. Nat Rev Methods Prim. 2022;2(1):33.

    Article  CAS  Google Scholar 

  41. Castilho M, et al. Multitechnology biofabrication: a new approach for the manufacturing of functional tissue structures? Trends Biotechnol. 2020;38(12):1316–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra de Graaf .

Editor information

Editors and Affiliations

9.1 Electronic Supplementary Material

(MP4 4348 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsachouridis, G., Abbas, T., de Kort, L.M.O., de Graaf, P. (2023). Tissue Engineering and Regenerative Medicine in Hypospadias Management. In: Abbas, T. (eds) Hypospadiology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7666-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7666-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7665-0

  • Online ISBN: 978-981-19-7666-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics