Skip to main content

Toward an Ecosystem Model of Hypospadiology

  • Chapter
  • First Online:
Hypospadiology

Abstract

Hypospadias displays a variety of phenotypic presentations and is rising in incidence globally, but to date no definitive etiological cause has been identified. Genetic, environmental, and parental factors appear to be involved, and emerging evidence suggests that interaction between these factors likely contributes to the majority of cases (Hypospadias ecosystem). In part due to this complexity, current classification methods lack sensitivity, objectivity, and reproducibility. New hypospadias classification systems are therefore being introduced to overcome these limitations. Among these are the Glans-Urethral Meatus-Shaft (GMS) scoring system, which generates a more elaborate picture of the anatomical defects associated with hypospadias, and the urethral defect ration (UDR) - Abbas 2022 system which identifies the level of bifurcation in the corpus spongiosum to quantify urethral hypoplasia. While several patient-related variables either alone or in combination can affect hypospadias grading, these newly developed methods represent significant advances over traditional assessments of predictive risk factors. Active efforts are being made to further refine these tools for quantifying hypospadias risk factors in order to improve patient outcomes. (See Video 1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nordenskjöld A, Holmdahl G. Role of genetic counseling for patients with hypospadias and their families. Eur J Pediatr Surg. 2021;31:492–6. https://doi.org/10.1055/s-0041-1740339.

    Article  PubMed  Google Scholar 

  2. Richard MA, Sok P, Canon S, Nembhard WN, Brown AL, Peckham-Gregory EC, et al. Altered mechanisms of genital development identified through integration of DNA methylation and genomic measures in hypospadias. Sci Rep. 2020;10:12715. https://doi.org/10.1038/s41598-020-69725-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Piñeyro-Ruiz C, Serrano H, Pérez-Brayfield MR, Jorge JC. New frontiers on the molecular underpinnings of hypospadias according to severity. Arab J Urol. 2020;18:257–66. https://doi.org/10.1080/2090598X.2020.1760589.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ea V, Bergougnoux A, Philibert P, Servant-Fauconnet N, Faure A, Breaud J, et al. How far should we explore hypospadias? Next-generation sequencing applied to a large cohort of hypospadiac patients. Eur Urol. 2021;79:507–15. https://doi.org/10.1016/j.eururo.2020.12.036.

    Article  CAS  PubMed  Google Scholar 

  5. Byers HM, Fossum M, Wu H-Y. How geneticists think about differences/disorders of sexual development (DSD): a conversation. J Pediatr Urol. 2020;16:760–7. https://doi.org/10.1016/j.jpurol.2020.08.015.

    Article  PubMed  Google Scholar 

  6. George M, Schneuer FJ, Jamieson SE, Holland AJA. Genetic and environmental factors in the aetiology of hypospadias. Pediatr Surg Int. 2015;31:519–27. https://doi.org/10.1007/s00383-015-3686-z.

    Article  PubMed  Google Scholar 

  7. Marrocco G, Grammatico P, Vallasciani S, Gulia C, Zangari A, Marrocco F, et al. Environmental, parental and gestational factors that influence the occurrence of hypospadias in male patients. J Pediatr Urol. 2015;11:12–9. https://doi.org/10.1016/j.jpurol.2014.10.003.

    Article  PubMed  Google Scholar 

  8. Snodgrass W, Macedo A, Hoebeke P, Mouriquand PDE. Hypospadias dilemmas: a round table. J Pediatr Urol. 2011;7:145–57. https://doi.org/10.1016/j.jpurol.2010.11.009.

    Article  PubMed  Google Scholar 

  9. Smith CK. Surgical procedure for correction of hypospadias. J Urol. 1938;40:239–47. https://doi.org/10.1016/S0022-5347(17)71759-4.

    Article  Google Scholar 

  10. John WD. Hypospadias. Pediatr Rev. 1989;11:37–42.

    Article  Google Scholar 

  11. Rosenbaum L. Scoring no goal—further adventures in transparency. N Engl J Med. 2015;373:1385–8. https://doi.org/10.1056/NEJMp1510094.

    Article  CAS  PubMed  Google Scholar 

  12. Baskin LS. New insights into hypospadias: next-generation sequencing reveals potential genetic factors in male urethral development. Eur Urol. 2021;79:516–8. https://doi.org/10.1016/j.eururo.2021.01.006.

    Article  PubMed  Google Scholar 

  13. Raghavan R, Romano ME, Karagas MR, Penna FJ. Pharmacologic and environmental endocrine disruptors in the pathogenesis of hypospadias: a review. Curr Environ Health Rep. 2018;5:499–511. https://doi.org/10.1007/s40572-018-0214-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rynja SP, Wouters GA, Van Schaijk M, Kok ET, De Jong TP, De Kort LM. Long-term followup of hypospadias: functional and cosmetic results. J Urol. 2009;182:1736–43. https://doi.org/10.1016/j.juro.2009.03.073.

    Article  PubMed  Google Scholar 

  15. Castagnetti M, El-Ghoneimi A. Surgical management of primary severe hypospadias in children: systematic 20-year review. J Urol. 2010;184:1469–75. https://doi.org/10.1016/j.juro.2010.06.044.

    Article  PubMed  Google Scholar 

  16. Orkiszewski M. A standardized classification of hypospadias. J Pediatr Urol. 2012;8:410–4. https://doi.org/10.1016/j.jpurol.2011.08.011.

    Article  PubMed  Google Scholar 

  17. Mouriquand PDE, Mure P-Y. Current concepts in hypospadiology. BJU Int. 2004;93:26–34. https://doi.org/10.1111/j.1464-410X.2004.04706.x.

    Article  PubMed  Google Scholar 

  18. Arlen AM, Kirsch AJ, Leong T, Broecker BH, Smith EA, Elmore JM. Further analysis of the glans-urethral meatus-shaft (GMS) hypospadias score: correlation with postoperative complications. J Pediatr Urol. 2015;11:71.e1–5. https://doi.org/10.1016/j.jpurol.2014.11.015.

    Article  PubMed  Google Scholar 

  19. Giannantoni A. Hypospadias classification and repair: the riddle of the sphinx. Eur Urol. 2011;60:1190–1. https://doi.org/10.1016/j.eururo.2011.08.057.

    Article  PubMed  Google Scholar 

  20. Spinoit A-F, Poelaert F, Van Praet C, Groen L-A, Van Laecke E, Hoebeke P. Grade of hypospadias is the only factor predicting for re-intervention after primary hypospadias repair: a multivariate analysis from a cohort of 474 patients. J Pediatr Urol. 2015;11:70.e1–6. https://doi.org/10.1016/j.jpurol.2014.11.014.

    Article  PubMed  Google Scholar 

  21. Dokter EM, Mouës CM, van Rooij IALM, van der Biezen JJ. Complications after hypospadias correction: prognostic factors and impact on final clinical outcome. Eur J Pediatr Surg. 2018;28:200–6. https://doi.org/10.1055/s-0037-1599230.

    Article  PubMed  Google Scholar 

  22. Abbas TO, Braga LH, Spinoit AF, Salle JP. Urethral plate quality assessment and its impact on hypospadias repair outcomes: a systematic review and quality assessment. J Pediatr Urol. 2021;17(3):316–25. https://doi.org/10.1016/j.jpurol.2021.02.017.

    Article  PubMed  Google Scholar 

  23. Menon V, Breyer B, Copp HL, Baskin L, Disandro M, Schlomer BJ. Do adult men with untreated ventral penile curvature have adverse outcomes? J Pediatr Urol. 2016;12(31):e1–7. https://doi.org/10.1016/j.jpurol.2015.09.009.

    Article  Google Scholar 

  24. Snodgrass W, Bush NC. Persistent or recurrent ventral curvature after failed proximal hypospadias repair. J Pediatr Urol. 2019;15:344.e1–6. https://doi.org/10.1016/j.jpurol.2019.03.028.

    Article  CAS  PubMed  Google Scholar 

  25. Schlomer BJ. Correction of residual ventral penile curvature after division of the urethral plate in the first stage of a 2-stage proximal hypospadias repair. Curr Urol Rep. 2017;18:13. https://doi.org/10.1007/s11934-017-0659-x.

    Article  PubMed  Google Scholar 

  26. Abbas TO. Evaluation of penile curvature in patients with hypospadias; gaps in the current practice and future perspectives. J Pediatr Urol. 2021;18(2):151–9. https://doi.org/10.1016/J.JPUROL.2021.12.015.

    Article  PubMed  Google Scholar 

  27. Jiao C, Wu R, Xu X, Yu Q. Long-term outcome of penile appearance and sexual function after hypospadias repairs: situation and relation. Int Urol Nephrol. 2011;43:47–54. https://doi.org/10.1007/s11255-010-9775-y.

    Article  PubMed  Google Scholar 

  28. Bush NC, Villanueva C, Snodgrass W. Glans size is an independent risk factor for urethroplasty complications after hypospadias repair. J Pediatr Urol. 2015;11:355.e1–5. https://doi.org/10.1016/j.jpurol.2015.05.029.

    Article  PubMed  Google Scholar 

  29. Sheng X, Xu D, Wu Y, Yu Y, Chen J, Qi J. The risk factors of urethrocutaneous fistula after hypospadias surgery in the youth population. BMC Urol. 2018;18:64. https://doi.org/10.1186/s12894-018-0366-z.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huang L-Q, Ge Z, Tian J, Ma G, Lu R-G, Deng Y-J, et al. Retrospective analysis of individual risk factors for urethrocutaneous fistula after onlay hypospadias repair in pediatric patients. Ital J Pediatr. 2015;41:35. https://doi.org/10.1186/s13052-015-0140-8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ansari MS, Agarwal S, Sureka SK, Mandhani A, Kapoor R, Srivastava A. Impact of changing trends in technique and learning curve on outcome of hypospadias repair: an experience from tertiary care center. Indian J Urol. 2016;32:216–20. https://doi.org/10.4103/0970-1591.185089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horowitz M, Salzhauer E. The “learning curve” in hypospadias surgery. BJU Int. 2006;97:593–6. https://doi.org/10.1111/j.1464-410X.2006.06001.x.

    Article  PubMed  Google Scholar 

  33. Frimberger D, Campbell J, Kropp BP. Hypospadias outcome in the first 3 years after completing a pediatric urology fellowship. J Pediatr Urol. 2008;4(4):270–4. https://doi.org/10.1016/J.JPUROL.2008.01.203.

    Article  PubMed  Google Scholar 

  34. Keays MA, Dave S. Current hypospadias management: diagnosis, surgical management, and long-term patient-centred outcomes. Can Urol Assoc J. 2017;11:S48–53. https://doi.org/10.5489/cuaj.4386.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu Y, Wang J, Zhao T, Wei Y, Han L, Liu X, et al. Complications following primary repair of non-proximal hypospadias in children: a systematic review and meta-analysis. Front Pediatr. 2020;8:579364. https://doi.org/10.3389/FPED.2020.579364.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Délot EC, Papp JC, DSD-TRN Genetics Workgroup, Sandberg DE, Vilain E. Genetics of disorders of sex development: the DSD-TRN experience. Endocrinol Metab Clin N Am. 2017;46:519–37. https://doi.org/10.1016/j.ecl.2017.01.015.

    Article  Google Scholar 

  37. Csősz É, Kalló G, Márkus B, Deák E, Csutak A, Tőzsér J. Quantitative body fluid proteomics in medicine—a focus on minimal invasiveness. J Proteome. 2017;153:30–43. https://doi.org/10.1016/j.jprot.2016.08.009.

    Article  CAS  Google Scholar 

  38. Abbas TO. An objective hypospadias classification system. J Pediatr Urol. 2022;18(4):481-e1. https://doi.org/10.1016/J.JPUROL.2022.05.001.

    Article  PubMed  Google Scholar 

  39. Wong YS, Pang KKY, Tam YH. The hypospadias phenotype with a distal meatus in the presence of distal penile penoscrotal angle fixation. Res Rep Urol. 2019;11:255–60. https://doi.org/10.2147/RRU.S222868.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hadidi AT. Classification of hypospadias. Hypospadias surg. Berlin: Springer; 2004. p. 79–82. https://doi.org/10.1007/978-3-662-07841-9_7.

    Book  Google Scholar 

  41. Cox K, Kyriakou A, Amjad B, O’Toole S, Flett ME, Welsh M, et al. Shorter anogenital and anoscrotal distances correlate with the severity of hypospadias: a prospective study. J Pediatr Urol. 2017;13:57.e1–5. https://doi.org/10.1016/j.jpurol.2016.08.006.

    Article  CAS  PubMed  Google Scholar 

  42. Al-Juraibah F, Lucas-Herald A, Nixon R, Toka C, Wang C, Flett M, et al. Association between extra-genital congenital anomalies and hypospadias outcome. Sex Dev. 2019;13:67–73. https://doi.org/10.1159/000497260.

    Article  CAS  PubMed  Google Scholar 

  43. Piñeyro-Ruiz C, Chorna NE, Pérez-Brayfield MR, Jorge JC. Severity-dependent profile of the metabolome in hypospadias. Front Pediatr. 2020;8:202. https://doi.org/10.3389/FPED.2020.00202.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Woud SG, van Rooij IALM, van Gelder MMHJ, Olney RS, Carmichael SL, Roeleveld N, et al. Differences in risk factors for second and third degree hypospadias in the national birth defects prevention study. Birth Defects Res A Clin Mol Teratol. 2014;100:703–11. https://doi.org/10.1002/bdra.23296.

    Article  CAS  PubMed  Google Scholar 

  45. van Rooij IALM, van der Zanden LFM, Brouwers MM, Knoers NVAM, Feitz WFJ, Roeleveld N. Risk factors for different phenotypes of hypospadias: results from a Dutch case-control study. BJU Int. 2013;112:121–8. https://doi.org/10.1111/j.1464-410X.2012.11745.x.

    Article  PubMed  Google Scholar 

  46. Brouwers MM, van der Zanden LFM, de Gier RPE, Barten EJ, Zielhuis GA, Feitz WFJ, et al. Hypospadias: risk factor patterns and different phenotypes. BJU Int. 2010;105:254–62. https://doi.org/10.1111/j.1464-410X.2009.08772.x.

    Article  PubMed  Google Scholar 

  47. Wu W-H, Chuang J-H, Ting Y-C, Lee S-Y, Hsieh C-S. Developmental anomalies and disabilities associated with hypospadias. J Urol. 2002;168:229–32. https://doi.org/10.1016/S0022-5347(05)64898-7.

    Article  PubMed  Google Scholar 

  48. McCarthy L, Abbas T. Hypospadias: repair of distal hypospadias. BJU Int. 2020;2020:0624. https://doi.org/10.18591/BJUIK.0624.

    Article  Google Scholar 

  49. Omran M, Sakr A, Elgalaly H, Fawzy A, Abdalla M. Narrow urethral plate augmentation in anterior and middle hypospadias repair: onlay flap vs. inlay graft. A prospective randomized comparative study. J Pediatr Urol. 2020;17(2):216-e1. https://doi.org/10.1016/j.jpurol.2020.11.026.

    Article  PubMed  Google Scholar 

  50. Aboutaleb H. Role of the urethral plate characters in the success of tubularized incised plate urethroplasty. Indian J Plast Surg. 2014;47:227. https://doi.org/10.4103/0970-0358.138956.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chukwubuike KE, Obianyo NEN, Ekenze SO, Ezomike UO. Assessment of the effect of urethral plate width on outcome of hypospadias repair. J Pediatr Urol. 2019;15:627.e1–6. https://doi.org/10.1016/J.JPUROL.2019.09.019.

    Article  CAS  PubMed  Google Scholar 

  52. Holland AJA, Smith GHH. Effect of the depth and width of the urethral plate on tubularized incised plate urethroplasty. J Urol. 2000;164(2):489–91. https://doi.org/10.1016/S0022-5347(05)67408-3.

    Article  CAS  PubMed  Google Scholar 

  53. Eldeeb M, Nagla S, Abou-Farha M, Hassan A. Snodgrass vs Snodgraft operation to repair the distal hypospadias in the narrow urethral plate. J Pediatr Urol. 2020;16:165.e1–8. https://doi.org/10.1016/j.jpurol.2020.01.006.

    Article  PubMed  Google Scholar 

  54. Seleim HM, ElSheemy MS, Abdalazeem Y, Abdullateef KS, Arafa MA, Shouman AM, et al. Comprehensive evaluation of grafting the preservable narrow plates with consideration of native plate width at primary hypospadias surgery. J Pediatr Urol. 2019;15:345.e1–7. https://doi.org/10.1016/j.jpurol.2019.05.002.

    Article  CAS  PubMed  Google Scholar 

  55. Fahmy O, Khairul-Asri MG, Schwentner C, Schubert T, Stenzl A, Zahran MH, et al. Algorithm for optimal urethral coverage in hypospadias and fistula repair: a systematic review. Eur Urol. 2016;70:293–8. https://doi.org/10.1016/j.eururo.2015.12.047.

    Article  PubMed  Google Scholar 

  56. Baskin LS, Duckett JW. Dorsal tunica albuginea plication for hypospadias curvature. J Urol. 1994;151:1668–71.

    Article  CAS  PubMed  Google Scholar 

  57. Wilkinson DJ, Farrelly P, Kenny SE. Outcomes in distal hypospadias: a systematic review of the Mathieu and tubularized incised plate repairs. J Pediatr Urol. 2012;8:307–12. https://doi.org/10.1016/j.jpurol.2010.11.008.

    Article  PubMed  Google Scholar 

  58. Shukla AK, Singh AP, Sharma P, Shukla J. Two stages repair of proximal hypospadias: review of 700 cases. J Indian Assoc Pediatr Surg. 2017;22:158. https://doi.org/10.4103/0971-9261.207627.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wani SA, Baba AA, Mufti GN, Rashid KA, Bhat NA, Buch M, et al. Bracka verses Byar’s two-stage repair in proximal hypospadias associated with severe chordee: a randomized comparative study. Pediatr Surg Int. 2020;36:965–70. https://doi.org/10.1007/s00383-020-04697-x.

    Article  PubMed  Google Scholar 

  60. Kadian YS, Singh M, Rattan KN. The role of tunica vaginalis flap in staged repair of hypospadias. Asian J Urol. 2017;4:107–10. https://doi.org/10.1016/j.ajur.2016.11.004.

    Article  PubMed  Google Scholar 

  61. Babu R, Chandrasekharam VVS. Meta-analysis comparing the outcomes of single stage (foreskin pedicled tube) versus two stage (foreskin free graft and foreskin pedicled flap) repair for proximal hypospadias in the last decade. J Pediatr Urol. 2021;17:681–9. https://doi.org/10.1016/j.jpurol.2021.05.014.

    Article  PubMed  Google Scholar 

  62. Snodgrass WT, Lorenzo A. Tubularized incised-plate urethroplasty for proximal hypospadias. BJU Int. 2002;89:90–3.

    Article  CAS  PubMed  Google Scholar 

  63. Abbas TO, Ali M. Scrotal base distance: a new key genital measurement in males with hypospadias and cryptorchidism. Curr Urol. 2021;15(4):214.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Braga LHP, Lorenzo AJ, Bägli DJ, Dave S, Eeg K, Farhat WA, et al. Ventral penile lengthening versus dorsal plication for severe ventral curvature in children with proximal hypospadias. J Urol. 2008;180:1743–8. https://doi.org/10.1016/j.juro.2008.03.087.

    Article  PubMed  Google Scholar 

  65. Wang CX, Zhang WP, Song HC. Complications of proximal hypospadias repair with transverse preputial island flap urethroplasty: a 15-year experience with long-term follow-up. Asian J Androl. 2019;21(3):300. https://doi.org/10.4103/AJA.AJA_115_18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu G, Yuan J, Feng J, Geng J, Zhang W, Zhou X, et al. Factors affecting the long-term results of hypospadias repairs. J Pediatr Surg. 2006;41:554–9. https://doi.org/10.1016/j.jpedsurg.2005.11.051.

    Article  PubMed  Google Scholar 

  67. Örtqvist L, Fossum M, Andersson M, Nordenström A, Frisén L, Holmdahl G, et al. Long-term followup of men born with hypospadias: urological and cosmetic results. J Urol. 2015;193:975–82. https://doi.org/10.1016/j.juro.2014.09.103.

    Article  PubMed  Google Scholar 

  68. Bethell GS, Chhabra S, Shalaby MS, Corbett H, Kenny SE, BAPS NOAH Contributors. Parental decisional satisfaction after hypospadias repair in the United Kingdom. J Pediatr Urol. 2020;16:164.e1–7. https://doi.org/10.1016/j.jpurol.2020.01.005.

    Article  CAS  PubMed  Google Scholar 

  69. Spinoit A-F, Waterschoot M, Sinatti C, Abbas T, Callens N, Cools M, et al. Fertility and sexuality issues in congenital lifelong urology patients: male aspects. World J Urol. 2020;39:1013–9. https://doi.org/10.1007/s00345-020-03121-2.

    Article  PubMed  Google Scholar 

  70. Merriman LS, Arlen AM, Broecker BH, Smith EA, Kirsch AJ, Elmore JM. The GMS hypospadias score: assessment of inter-observer reliability and correlation with post-operative complications. J Pediatr Urol. 2013;9:707–12. https://doi.org/10.1016/j.jpurol.2013.04.006.

    Article  PubMed  Google Scholar 

  71. Abbas TO, Vallasciani S, Elawad A, Elifranji M, Leslie B, Elkadhi A, et al. Plate Objective Scoring Tool (POST); an objective methodology for the assessment of urethral plate in distal hypospadias. J Pediatr Urol. 2020;16:675–82. https://doi.org/10.1016/j.jpurol.2020.07.043.

    Article  PubMed  Google Scholar 

  72. Ru W, Shen J, Tang D, Xu S, Wu D, Tao C, et al. Width proportion of the urethral plate to the glans can serve as an appraisal index of the urethral plate in hypospadias repair. Int J Urol. 2018;25:649–53. https://doi.org/10.1111/iju.13585.

    Article  PubMed  Google Scholar 

  73. Siapno AED, Yi BC, Daniels D, Bolagani A, Kwan L, Walker D, et al. Measurement accuracy of 3-dimensional mapping technologies versus standard goniometry for angle assessment. J Pediatr Urol. 2020;16:547–54. https://doi.org/10.1016/j.jpurol.2020.08.021.

    Article  PubMed  Google Scholar 

  74. Bhatia VP, Wolf J, Farhat WA, Lewis B, Gralnek DR, Eliceiri KW, et al. External validation of a low fidelity dry-lab platform to enhance loupes surgical skills techniques for hypospadias repair. J Pediatr Urol. 2022;18(6):765-e1. https://doi.org/10.1016/J.JPUROL.2022.04.020.

    Article  PubMed  Google Scholar 

  75. Cunnane EM, Davis NF, Cunnane CV, Lorentz KL, Ryan AJ, Hess J, et al. Mechanical, compositional and morphological characterisation of the human male urethra for the development of a biomimetic tissue engineered urethral scaffold. Biomaterials. 2021;269:120651. https://doi.org/10.1016/j.biomaterials.2021.120651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rowe CK, Jamdee T, Foster C, Burke KA. Do the materials matter? A review of the literature and analysis of the materials properties of urethral stents for hypospadias repair. J Pediatr Urol. 2022;18(2):160–7. https://doi.org/10.1016/J.JPUROL.2022.01.003.

    Article  PubMed  Google Scholar 

  77. Esposito C, Coppola V, Del Conte F, Cerulo M, Esposito G, Crocetto F, et al. Evaluation of a new tubular finger oxygen-enriched oil inside-coated dressing device in pediatric patients undergoing distal hypospadias repair: a prospective randomized clinical trial part II. Front Pediatr. 2021;9:638406. https://doi.org/10.3389/fped.2021.638406.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Shenoy NS, Tiwari C, Gandhi S, Kumbhar V, Joseph V, Basu S, et al. Efficacy of fibrin sealant as waterproof cover in improving outcome in hypospadias surgery. Afr J Paediatr Surg. 2021;18:215–8. https://doi.org/10.4103/ajps.AJPS_132_20.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Abbas .

Editor information

Editors and Affiliations

1.1 Electronic Supplementary Material

(MP4 3914 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abbas, T., Vallasciani, S. (2023). Toward an Ecosystem Model of Hypospadiology. In: Abbas, T. (eds) Hypospadiology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7666-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7666-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7665-0

  • Online ISBN: 978-981-19-7666-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics