Skip to main content

Biobased Graphene for Synthesis of Nanophotocatalysts in the Treatment of Wastewater: A Review and Future Perspective

  • Chapter
  • First Online:
Biorefinery: A Sustainable Approach for the Production of Biomaterials, Biochemicals and Biofuels

Abstract

Recently, process development for the reclamation and reusability of wastewater gathers prominent attention due to scarcity of water which arose as a consequence of climate change, limited water resources, and increased agriculture and industrial usage. In the removal of pollutants from wastewaters such as pathogens, organic dyes, etc., semiconductor photocatalyst is an advantageous method because of mild and simple operating conditions, non-toxicity, chemical inertness, low cost, and use of sustainable source such as solar light for degradation. Among probable semiconductor materials, titanium oxide (TiO2) and zinc oxide (ZnO) are very promising due to their high stability, low cost, low toxicity, etc. To accelerate the activity of photocatalyst, many strategies have been adopted such as coupling and doping with other organic and inorganic materials such as carbon, nitrogen, and metals on lattices of semiconductor materials. Among these, there is a considerable interest in graphene due to its chemical stability, high surface area, high electron mobility, and outstanding electrical conductivity. This chapter includes the advances in the biobased graphene (G) and template in the synthesis of nanophotocatalysts (NCPCs). The developed oxide/G-photocomposite would be used along with UV or visible-UV and visible light as a source of irradiation for the treatment of industrial/agricultural wastewaters for heavy metal/dye/antibiotic/oil spill efficiency will be discussed. Based on the literature reviews and past research activities, we recommend using the renewable source of graphene precursor and templating agent for NCPCs. We also propose in situ preparation of graphene-oxide nanocomposite and its photocatalytic application for wastewater treatment. This will open an avenue to explore the energy-saving alternative for NCPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ag+:

Silver

AgCl:

Silver chloride

AO:

Acridine orange

Au:

Gold

Bi2O3:

Dibismuth trioxide

C3N4:

Carbon nitride

Ca2+:

Calcium

CB:

Conduction band

CdS:

Cadmium sulfide

Ce3+:

Cerium

CeO2:

Cerium dioxide

CO2:

Carbon dioxide

Co2+:

Cobalt

Cr3+:

Chromium

Cu:

Copper

Cu2+:

Copper

CuO:

Copper oxide

DCDA:

Dicyandiamide

DSSC:

Dye-sensitized solar cell

EtOH:

Ethanol

Fe2+:

Iron

Fe3O4:

Iron oxide

FeCl3:

Ferric chloride

G:

Graphene

GCS:

Graphitic carbon sheet

GO:

Graphene oxide

h+:

Holes

H2O:

Water

H2O2:

Hydrogen peroxide

H2PO4ˉ:

Dihydrogen phosphate

KOH:

Potassium hydroxide

MB:

Methylene blue

MG:

Malachite green

Mn2+:

Manganese

MnO2:

Manganese dioxide

Mo2C:

Molybdenum carbide

MV:

Methyl violet

NCPCs:

Nanocomposite photocatalysts

NH4:

Ammonium

Ni2+:

Nickel

NPs:

Nanoparticles

OH:

Hydroxyl radicals

Pt:

Platinum

RGO:

Reduce graphene oxide

RhB:

Rhodamine B

SnO2:

Tin dioxide

TiO2:

Titanium oxide

TSS:

Total suspended solid

VB:

Valence band

Zn2+:

Zinc

ZnO:

Zinc oxide

ZrO2:

Zirconium dioxide

References

  • Adhikari S, Gupta R, Surin A, Kumar TS, Chakraborty S, Sarkar D, Madras G (2016) Visible light assisted improved photocatalytic activity of combustion synthesized spongy-ZnO towards dye degradation and bacterial inactivation. RSC Adv 6(83):80086–80098

    Article  Google Scholar 

  • Ahmed SN, Haider W (2018) Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology 29(34):342001

    Article  PubMed  Google Scholar 

  • Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261(1–2):3–18

    Article  CAS  Google Scholar 

  • Ali I, Arsh A, Mbianda XY, Burakov A, Galunin E, Burakova I (2019) Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int 127:160–180

    Article  CAS  PubMed  Google Scholar 

  • An X, Yu JC (2011) Graphene-based photocatalytic composites. RSC Adv 1:1426–1434

    Article  CAS  Google Scholar 

  • Atienzar P, Primo A, Lavorato C, Molinari R, García H (2013) Preparation of graphene quantum dots from pyrolyzed alginate. Langmuir 29(20):6141–6146

    Article  CAS  PubMed  Google Scholar 

  • Bagbi Y, Sarswat A, Mohan D, Pandey A, Solanki PR (2017) Lead and chromium adsorption from water using L-cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci Rep 7(1):1–15

    Article  CAS  Google Scholar 

  • Bai X, Sun C, Liu D, Luo X, Li D, Wang J (2017) Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Appl Catal B Environ 204:11–20

    Article  CAS  Google Scholar 

  • Bano Z, Mazari SA, Saeed RMY, Majeed MA, Xia M, Memon AQ et al (2020a) Water decontamination by 3D graphene based materials: a review. J Water Process Eng 36:101404

    Article  Google Scholar 

  • Bano Z, Mazari SA, Saeed RMY, Majeed MA, Xia M, Qayoom A et al (2020b) Water decontamination by 3D graphene based materials: a review. J Water Process Eng 36:101404

    Article  Google Scholar 

  • Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F et al (2008) Graphene-based liquid crystal device. Nano Lett 8(6):1704–1708

    Article  PubMed  Google Scholar 

  • Burkhard L, Lukasewycz M (2008) Toxicity equivalency values for polychlorinated biphenyl mixtures. Environ Toxicol Chem 27(3):529–534

    Article  CAS  PubMed  Google Scholar 

  • Byrne C, Subramanian G, Pillai SC (2018) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng:3531–3555

    Google Scholar 

  • Che W, Luo Y, Deng F, Zhang A, Zhao L, Luo X et al (2018) Facile solvothermal fabrication of cubic-like reduced graphene oxide/AgIn5S8 nanocomposites with anti-photo corrosion and high visible-light photocatalytic performance for highly-efficient treatment of nitrophenols and real pharmaceutical wastewater. Appl Catal A General 565:170–180

    Article  CAS  Google Scholar 

  • Cheaptubes.com. https://www.cheaptubes.com/graphene-synthesis-properties-and-applications/

  • Chen F, Liu Z, Liu Y, Fang P, Dai Y (2013) Enhanced adsorption and photocatalytic degradation of high-concentration methylene blue on Ag2O-modified TiO2-based nanosheet. Chem Eng J 221:283–291

    Article  CAS  Google Scholar 

  • Cui W, Cheng N, Liu Q, Ge C, Asiri AM, Sun X (2014) Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal 4(8):2658–2661

    Article  CAS  Google Scholar 

  • Da Rocha OR, Dantas RF, Duarte MM, Duarte MM, Da Silva VL (2010) Oil sludge treatment by photocatalysis applying black and white light. Chem Eng J 157(1):80–85

    Article  Google Scholar 

  • Das T, Rocquefelte X, Laskowski R, Lajaunie L, Jobic S, Blaha P et al (2017) Investigation of the optical and excitonic properties of the visible light-driven photocatalytic BiVO4 material. Chem Mater 29(8):3380–3386

    Article  CAS  Google Scholar 

  • Deng S, Qi X d, Zhu Y l, Zhou H j, Chen F, Fu Q (2016) A facile way to large-scale production of few-layered graphene via planetary ball mill. Chin J Polym Sci 34(10):1270–1280

    Article  CAS  Google Scholar 

  • Dong S, Li Y, Sun J, Yu C, Li Y, Sun J (2014) Facile synthesis of novel ZnO/RGO hybrid nanocomposites with enhanced catalytic performance for visible-light-driven photodegradation of metronidazole. Mater Chem Phys 145:357–365

    Article  CAS  Google Scholar 

  • Dong S, Cui L, Liu C, Zhang F, Li K, Xia L et al (2019) Fabrication of 3D ultra-light graphene aerogel/Bi2WO6 composite with excellent photocatalytic performance: a promising photocatalysts for water purification. J Taiwan Inst Chem Eng 97:288–296

    Article  CAS  Google Scholar 

  • Ema M, Gamo M, Honda K (2017) A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul Toxicol Pharmacol 85:7–24

    Article  CAS  PubMed  Google Scholar 

  • Esteve-Adell I, He J, Ramiro F, Atienzar P, Primo A, García H (2018) Catalyst-free one step synthesis of large area vertically stacked N-doped graphene-boron nitride heterostructures from biomass source. Nanoscale 10(9):4391–4397

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Ma W, Han D, Gan S, Dong X, Niu L (2015) Convenient recycling of 3D AgX/graphene Aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv Mater 27(25):3767–3773

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Wang G, Liao J, Li W, Chen C, Li M et al (2017) Honeycomb-like ZnO mesoporous nanowall arrays modified with Ag nanoparticles for highly efficient photocatalytic activity. Sci Rep 7(1):1–11

    Article  Google Scholar 

  • Fu D, Han G, Yang F, Zhang T, Chang Y, Liu F (2013) Seed-mediated synthesis and the photo-degradation activity of ZnO–graphene hybrids excluding the influence of dye adsorption. Appl Surf Sci 283:654–659

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, Albero J, García H (2017) Multilayer N-doped graphene films as photoelectrodes for H2 evolution. Chem Photo Chem 1(9):388–392

    CAS  Google Scholar 

  • Giovannetti R, Rommozzi E, Zannotti M, D’Amato CA (2017) Recent advances in graphene based TiO2 nanocomposites (GTiO2Ns) for photocatalytic degradation of synthetic dyes. Catalysts 7(10):305. https://doi.org/10.3390/catal7100305

    Article  CAS  Google Scholar 

  • Guan Z, Guan Z, Li Z, Liu J, Yu K (2019) Characterization and preparation of nano-porous carbon derived from hemp stems as anode for lithium-ion batteries. Nanoscale Res Lett 14(1):1–9

    Article  CAS  Google Scholar 

  • Guo X, Mei N (2014) Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal 22(1):105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta VK, Eren T, Atar N, Yola ML, Parlak C, Karimi-Maleh H (2015) CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J Mol Liq 208:122–129

    Article  Google Scholar 

  • Hallaj T, Amjadi M, Manzoori JL, Shokri R (2015) Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchim Acta 182(3–4):789–796

    Article  CAS  Google Scholar 

  • Han C, Chen Z, Zhang N, Colmenares JC, Xu YJ (2015) Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance. Adv Funct Mater 25(2):221–229

    Article  CAS  Google Scholar 

  • Han L, Li Q, Chen S, Xie W, Bao W, Chang L et al (2017) A magnetically recoverable Fe3O4-NH2-Pd sorbent for capture of mercury from coal derived fuel gas. Sci Rep 7(1):2–11

    Article  Google Scholar 

  • Han Q, Chen L, Li W, Zhou Z, Fang Z, Xu Z et al (2018) Self-assembled three-dimensional double network graphene oxide/polyacrylic acid hybrid aerogel for removal of Cu2+ from aqueous solution. Environ Sci Pollut Res 25(34):34438–34447

    Article  CAS  Google Scholar 

  • Hao P, Zhao Z, Leng Y, Tian J, Sang Y, Boughton RI et al (2015) Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15:9–23

    Article  CAS  Google Scholar 

  • Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  • Hu C, Lu T, Chen F, Zhang R (2013) A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis. J Chin Adv Mater Soc 1(1):21–39

    Article  CAS  Google Scholar 

  • Huo P, Zhou M, Tang Y, Liu X, Ma C, Yu L et al (2016) Incorporation of N–ZnO/CdS/Graphene oxide composite photocatalyst for enhanced photocatalytic activity under visible light. J Alloys Compd 670:198–209

    Article  CAS  Google Scholar 

  • Iftekhar Uddin ASM, Phan D-T, Chung G-S (2015) Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens Actuators B Chem 207:362–369

    Article  CAS  Google Scholar 

  • Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N et al (2011) TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon N Y 49(8):2693–2701

    Article  CAS  Google Scholar 

  • Jiang Y, Chowdhury S, Balasubramanian R (2017) Nitrogen-doped graphene hydrogels as potential adsorbents and photocatalysts for environmental remediation. Chem Eng J 327:751–763

    Article  CAS  Google Scholar 

  • Jo WK, Kumar S, Isaacs MA, Lee AF, Karthikeyan S (2017) Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Appl Catal B Environ 201:159–168

    Article  CAS  Google Scholar 

  • Johnson R (2019) Defining hemp: a fact sheet. Washington, DC, Congressional Research Service

    Google Scholar 

  • Khan M (2015) 美国科学院学报 Materials chemistry A 材料化学 a. J Mater Chem A 207890:121

    Google Scholar 

  • Khan NA, Khan SU, Ahmed S, Farooqi IH, Dhingra A, Hussain A et al (2019) Applications of nanotechnology in water and wastewater treatment: a review. Asian J Water Environ Pollut 16(4):81–86

    Article  Google Scholar 

  • Kheirabadi M, Samadi M, Asadian E, Zhou Y, Dong C, Zhang J et al (2019) Well-designed Ag/ZnO/3D graphene structure for dye removal: adsorption, photocatalysis and physical separation capabilities. J Colloid Interface Sci 537:66–78

    Article  CAS  PubMed  Google Scholar 

  • Khemthong P, Photai P, Grisdanurak N (2013) Structural properties of CuO/TiO2 nanorod in relation to their catalytic activity for simultaneous hydrogen production under solar light. Int J Hydrog Energy 38(36):15992–16001

    Article  CAS  Google Scholar 

  • Lai C, Wang MM, Zeng GM, Liu YG, Huang DL, Zhang C et al (2016) Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation. Appl Surf Sci 390:368–376

    Article  CAS  Google Scholar 

  • Lalwani G, D’Agati M, Khan AM, Sitharaman B (2016) Toxicology of graphene-based nanomaterials. Adv Drug Deliv Rev 105:109–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latorre-Sánchez M, Primo A, García H (2013) P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water–methanol mixtures. Angew Chem Int Ed 52(45):11813–11816

    Article  Google Scholar 

  • Lavorato C, Primo A, Molinari R, Garcia H (2014a) Natural alginate as a graphene precursor and template in the synthesis of nanoparticulate ceria/graphene water oxidation photocatalysts. ACS Catal 4(2):497–504

    Article  CAS  Google Scholar 

  • Lavorato C, Primo A, Molinari R, Garcia H (2014b) N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures. Chem Eur J 20(1):187–194

    Article  CAS  PubMed  Google Scholar 

  • Lee XJ, Hiew BYZ, Lai KC, Lee LY, Gan S, Thangalazhy-Gopakumar S, Rigby S (2019) Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng 98:163–180

    Article  CAS  Google Scholar 

  • Li B, Cao H (2011) ZnO@ graphene composite with enhanced performance for the removal of dye from water. J Mater Chem 21(10):3346–3349

    Article  CAS  Google Scholar 

  • Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011a) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133(28):10878–10884

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li W, Zhang Y, Wang T, Wang B, Xu W et al (2011b) Chrysanthemum-like α-FeOOH microspheres produced by a simple green method and their outstanding ability in heavy metal ion removal. J Mater Chem 21(22):7878–7881

    Article  CAS  Google Scholar 

  • Li XH, Kurasch S, Kaiser U, Antonietti M (2012) Synthesis of monolayer-patched graphene from glucose. Angew Chem Int Ed 51(38):9689–9692

    Article  CAS  Google Scholar 

  • Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25(17):2474–2480

    Article  CAS  PubMed  Google Scholar 

  • Li M-f, Liu Y-g, Zeng G-m, Liu N, Liu S-b (2019) Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: a review. Chemosphere 226:360–380

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Zhou Y, Kang K, Zhang Y, Cai Z, Pan J (2017) Synthesis and characterization of porous TiO2-NS/Pt/GO aerogel: a novel three-dimensional composite with enhanced visible-light photoactivity in degradation of chlortetracycline. J Photochem Photobiol A Chem 2017(346):1–9

    Article  Google Scholar 

  • Lin Y, Ferronato C, Deng N, Chovelon JM (2011) Study of benzylparaben photocatalytic degradation by TiO2. Appl Catal B Environ 104(3–4):353–360

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  CAS  Google Scholar 

  • Liou TH, Liou YH (2021) Utilization of rice husk ash in the preparation of graphene-oxide-based mesoporous nanocomposites with excellent adsorption performance. Materials 14(5):1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Sun H, Liu S, Wang S (2013a) Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chem Eng J 214:298–303

    Article  CAS  Google Scholar 

  • Liu X, Zhang H, Ma Y, Wu X et al (2013b) Graphene-coated silica as a highly efficient sorbent for residual organophosphorus pesticides in water. J Mater Chem A 1:1875–1884

    Article  CAS  Google Scholar 

  • Liu L, Xiong Z, Hu D, Guotao W, Chen P (2013c) Production of high-quality single- or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane. Chem Commun 49(72):7890–7892

    Article  CAS  Google Scholar 

  • Liu J, Ge X, Ye X, Wang G, Zhang H, Zhou H et al (2016) 3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions. J Mater Chem A 4(5):1970–1979

    Article  CAS  Google Scholar 

  • Luan VH, Tien HN, Hur SH (2015) Fabrication of 3D structured ZnO nanorod/reduced graphene oxide hydrogels and their use for photo-enhanced organic dye removal. J Colloid Interface Sci 437:181–186

    Article  CAS  PubMed  Google Scholar 

  • Lui G, Liao JY, Duan A, Zhang Z, Fowler M, Yu A (2013) Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. J Mater Chem A 1(39):12255–12262

    Article  CAS  Google Scholar 

  • Maliyekkal SM, Sreeprasad TS, Krishnan D et al (2013) Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small 9:273–283

    Article  CAS  PubMed  Google Scholar 

  • Mascolo MC, Pei Y, Ring TA (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large ph window with different bases. Materials (Basel) 6(12):5549–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo D, Esteve-Adell I, Albero J, Royo JF, Primo A, Garcia H (2016) 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nat Commun 7(1):1–8

    Article  Google Scholar 

  • Mateo D, Esteve-Adell I, Albero J, Primo A, Garcia H (2017) Oriented 2.0. 0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Appl Catal B 201:582–590

    Article  CAS  Google Scholar 

  • Mateo D, Garcia-Mulero A, Albero J, Garcia H (2019) N-doped defective graphene decorated by strontium titanate as efficient photocatalyst for overall water splitting. Appl Catal B 252:111–119

    Article  CAS  Google Scholar 

  • Mohamed SK, Hegazy SH, Abdelwahab NA, Ramadan AM (2018) Coupled adsorption-photocatalytic degradation of crystal violet under sunlight using chemically synthesized grafted sodium alginate/ZnO/Graphene oxide composite. Int J Biol Macromol 108:1185–1198

    Article  CAS  PubMed  Google Scholar 

  • Moon YE, Jung G, Yun J, Kim H II (2013) Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants. Mater Sci Eng B Solid-State Mater Adv Technol 178(17):1097–1103

    Article  CAS  Google Scholar 

  • Naushad M (2018) A new generation material graphene: applications in water technology. A new generation material graphene. Applications in water technology. Springer International Publishing, New York, pp 1–471

    Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou SK, Katsaros FK, Favvas EP, Romanos GE, Athanasekou CP, Beltsios KG et al (2012) Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes. Water Res 46(6):1858–1872

    Article  CAS  PubMed  Google Scholar 

  • Pathania D, Thakur M, Sharma A (2019) Photocatalytical degradation of pesticides. Nano-materials as photocatalysts for degradation of environmental pollutants: challenges and possibilities. Elsevier Inc., Amsterdam, pp 153–172

    Google Scholar 

  • Premalatha N, Miranda LR (2019) Surfactant modified ZnO–Bi2O3 nanocomposite for degradation of lambda-cyhalothrin pesticide in visible light: a study of reaction kinetics and intermediates. J Environ Manag 246:259–266

    Article  CAS  Google Scholar 

  • Primo A, Atienzar P, Sanchez E, Delgado JM, García H (2012a) From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem Commun 48(74):9254–9256

    Article  CAS  Google Scholar 

  • Primo A, Forneli A, Corma A, Garcia H (2012b) From biomass wastes to highly efficient CO2 adsorbents: graphitisation of chitosan and alginate biopolymers. ChemSusChem 5(11):2207–2214

    Article  CAS  PubMed  Google Scholar 

  • Primo A, Esteve-Adell I, Blandez JF, Dhakshinamoorthy A, Álvaro M, Candu N, Coman SM, Parvulescu VI, García H (2015) High catalytic activity of oriented 2.0. 0 copper (I) oxide grown on graphene film. Nat Commun 6(1):1–1

    Article  Google Scholar 

  • Radhika NP, Selvin R, Kakkar R, Umar A (2019) Recent advances in nano-photocatalysts for organic synthesis. Arab J Chem 12(8):4550–4578

    Article  CAS  Google Scholar 

  • Rajabi HR, Shahrezaei F, Farsi M (2016) Zinc sulfide quantum dots as powerful and efficient nanophotocatalysts for the removal of industrial pollutant. J Mater Sci Mater Electron 27(9):9297–9305

    Article  CAS  Google Scholar 

  • Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S (2016) Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 6:1–11

    Article  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231

    Article  CAS  Google Scholar 

  • Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151(1–3):10–18

    Article  CAS  Google Scholar 

  • Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170(2–3):395–410

    Article  CAS  Google Scholar 

  • Ren Z, Zhang J, Xiao FX, Xiao G (2014) Revisiting the construction of graphene-CdS nanocomposites as efficient visible-light-driven photocatalysts for selective organic transformation. J Mater Chem A 2(15):5330–5339

    Article  CAS  Google Scholar 

  • Rodríguez J, Paraguay-Delgado F, López A, Alarcón J, Estrada W (2010) Synthesis and characterization of ZnO nanorod films for photocatalytic disinfection of contaminated water. Thin Solid Films 519(2):729–735

    Article  Google Scholar 

  • Safian MTU, Haron US, Ibrahim MM (2020) A review on bio-based graphene derived from biomass wastes. Bioresources 15(4):9756

    Article  Google Scholar 

  • Sampaio MJ, Lima MJ, Baptista DL, Silva AMT, Silva CG, Faria JL (2017) Ag-loaded ZnO materials for photocatalytic water treatment. Chem Eng J 318:95–102

    Article  CAS  Google Scholar 

  • Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34

    Article  CAS  PubMed  Google Scholar 

  • Sankar S, Lee H, Jung H, Kim A, Ahmed ATA, Inamdar AI et al (2017) Ultrathin graphene nanosheets derived from rice husks for sustainable supercapacitor electrodes. New J Chem 41(22):13792–13797

    Article  CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Seitzhanova MA, Mansurov ZA, Yeleuov M, Roviello V, Di Capua R (2019) The characteristics of graphene obtained from rice husk and graphite. Eurasian Chem Technol J 21:149–156

    Article  CAS  Google Scholar 

  • Seymour MB, Su C, Gao Y, Lu Y, Li Y (2012) Characterization of carbon nano-onions for heavy metal ion remediation. J Nanopart Res 14(9):1087

    Article  Google Scholar 

  • Shanavas S, Priyadharsan A, Gkanas EI, Acevedo R, Anbarasan PM (2019) High efficient catalytic degradation of tetracycline and ibuprofen using visible light driven novel Cu/Bi2Ti2O7/rGO nanocomposite: kinetics, intermediates and mechanism. J Ind Eng Chem 72:512–528

    Article  CAS  Google Scholar 

  • She P, Yin S, He Q, Zhang X, Xu K, Shang Y et al (2017) A self-standing macroporous Au/ZnO/reduced graphene oxide foam for recyclable photocatalysis and photocurrent generation. Electrochim Acta 246:35–42

    Article  CAS  Google Scholar 

  • Shehab M, Ebrahim S, Soliman M (2017) Graphene quantum dots prepared from glucose as optical sensor for glucose. J Lumin 184:110–116

    Article  CAS  Google Scholar 

  • Shu J, Wang Z, Xia G, Zheng Y, Yang L, Zhang W (2014) One-pot synthesis of AgCl at Ag hybrid photocatalyst with high photocatalytic activity and photostability under visible light and sunlight irradiation. Chem Eng J 252:374–381

    Article  CAS  Google Scholar 

  • Singh P, Bahadur J, Pal K (2017) One-step one chemical synthesis process of graphene from rice husk for energy storage applications. Graphene 6(3):61–71

    Article  CAS  Google Scholar 

  • Srikanth B, Goutham R, Narayan RB, Ramprasath A, Gopinath KP, Sankaranarayanan AR (2017) Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J Environ Manag 200:60–78

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  • Sun S, Gao L, Liu Y (2010) Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Appl Phys Lett 96(8):083113

    Article  Google Scholar 

  • Supriya, Basu JK, Sengupta S (2019) Catalytic reduction of nitrobenzene using silver nanoparticles embedded calcium alginate film. J Nanosci Nanotechnol 19:7487–7492

    Article  CAS  Google Scholar 

  • Supriya, Basu JK, Pal CK, Sengupta S (2021) One pot synthesis of Ag-np entrapped in in-situ formed calcium alginate beads and the catalytic application of this composite in p-nitrophenol reduction with parameter estimation and kinetic modeling. Can J Chem Eng 99:359–373

    Article  CAS  Google Scholar 

  • Tade RS, Nangare SN, Patil AG, Pandey A, Deshmukh PK, Patil DR, Agrawal TN, Mutalik S, Patil AM, More MP, Bari SB (2020) Recent advancement in bio-precursor derived graphene quantum dots: synthesis, characterization and toxicological perspective. Nanotechnology 31:29

    Article  Google Scholar 

  • Tahir MB, Kiran H, Iqbal T (2019) The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review. Environ Sci Pollut Res 26(11):10515–10528

    Article  CAS  Google Scholar 

  • Tang Y, Zhang G, Liu C, Luo S, Xu X (2013) Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water. J Hazard Mater 252–253:115–122

    Article  PubMed  Google Scholar 

  • Tang Y, Liu X, Ma C, Zhou M, Huo P, Yu L et al (2015) Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts. New J Chem 39(7):5150–5160

    Article  CAS  Google Scholar 

  • Thangavel S, Thangavel S, Raghavan N, Krishnamoorthy K, Venugopal G (2016) Visible-light driven photocatalytic degradation of methylene-violet by rGO/Fe3O4/ZnO ternary nanohybrid structures. J Alloys Compd 665:107–112

    Article  CAS  Google Scholar 

  • Tiwari JN, Mahesh K, Le NH, Kemp KC, Timilsina R, Tiwari RN et al (2013) Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon N Y 56:173–182

    Article  CAS  Google Scholar 

  • Tju H, Taufik A, Saleh R (2016) Enhanced UV photocatalytic performance of magnetic Fe3O4/CuO/ZnO/NGP Nanocomposites. J Phys Conf Ser 710(1):012005

    Article  Google Scholar 

  • Ton NN, Dao AT, Kato K, Ikenaga T, Trinh DX, Taniike T (2018) One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method. Carbon 133:109–117

    Article  CAS  Google Scholar 

  • Upadhyay S, Parekh K, Pandey B (2016) Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. J Alloys Compd 678:478–485

    Article  CAS  Google Scholar 

  • Veréb G, Manczinger L, Oszkó A, Sienkiewicz A, Forró L, Mogyorósi K et al (2013) Highly efficient bacteria inactivation and phenol degradation by visible light irradiated iodine doped TiO2. Appl Catal B Environ 129:194–201

    Article  Google Scholar 

  • Wang W, Li Y, Wu Q, Wang C, Zang X, Wang Z (2012a) Extraction of neonicotinoid insecticides from environmental water samples with magnetic graphene nanoparticles as adsorbent followed by determination with HPLC. Anal Methods 4:766–772

    Article  CAS  Google Scholar 

  • Wang J, Shi Z, Fan J, Ge Y, Yin J, Hu G (2012b) Self-assembly of graphene into three-dimensional structures promoted by natural phenolic acids. J Mater Chem 22(42):22459–22466

    Article  CAS  Google Scholar 

  • Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X et al (2013a) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7(6):5131–5141

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y et al (2013b) Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat Commun 4(1):1–8

    Article  Google Scholar 

  • Wang W, Cheng Y, Kong T, Cheng G (2015a) Iron nanoparticles decoration onto three-dimensional graphene for rapid and efficient degradation of azo dye. J Hazard Mater 299:50–58

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang R, Li M, Zhao Z (2015b) Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications. Ind Crop Prod 65:16–226

    Article  Google Scholar 

  • Wang W, Xiao K, Zhu L, Yin Y, Wang Z (2017) Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation. RSC Adv 7(34):21287–21297

    Article  CAS  Google Scholar 

  • Weng B, Qi MY, Han C, Tang ZR, Xu YJ (2019) Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective. ACS Catal 9(5):4642–4687

    Article  CAS  Google Scholar 

  • Whitener KE Jr, Sheehan PE (2014) Graphene synthesis. Diamond Relat Mater 46:25–34

    Article  CAS  Google Scholar 

  • Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Zhao G, Feng C, Wang C, Wang Z (2011) Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. J Chromatograph A 1218:7936–7942

    Article  CAS  Google Scholar 

  • Wu H, Min Y, Zhang Q, Li W, Yuan J, Wu Z, Wang S (2016) Low-temperature synthesis of mesoporous ZnTiO3-graphene composite for the removal of norfloxacin in aqueous solution. RSC Adv 6:103822–103829

    Article  CAS  Google Scholar 

  • Yan Y, Sun S, Song Y, Yan X, Guan W, Liu X, Shi W (2013) Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin. J Hazard Mater 250–251:106–114

    Article  PubMed  Google Scholar 

  • Yan Y, Nashath FZ, Chen S, Manickam S, Lim SS, Zhao H, Lester E, Wu T, Pang CH (2020) Synthesis of graphene: potential carbon precursors and approaches. Nanotechnol Rev 9:1284–1314

    Article  CAS  Google Scholar 

  • Yang X, Yuan Y, Zhang N, Cao X, Liu C (2014) Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy 99:259–266

    Article  CAS  Google Scholar 

  • Yaqoob AA, Parveen T, Umar K, Nasir M, Ibrahim M (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12(2):495

    Article  CAS  Google Scholar 

  • Yu Y, Yan L, Cheng J, Jing C (2017) Mechanistic insights into TiO2 thickness in Fe3O4@TiO2-GO composites for enrofloxacin photodegradation. Chem Eng J 325:647–654

    Article  CAS  Google Scholar 

  • Yu W, Sisi L, Haiyan Y, Jie L (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10(26):15328–15345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Z, Liu A, Zhang C, Huang J, Zhu M, Du Y et al (2017) Noble-metal-free hetero-structural CdS/Nb2O5/N-doped-graphene ternary photocatalytic system as visible-light-driven photocatalyst for hydrogen evolution. Appl Catal B Environ 201:202–210

    Article  CAS  Google Scholar 

  • Yusuf M, Khan MA, Otero M, Abdullah EC, Hosomi M, Terada A et al (2017) Synthesis of CTAB intercalated graphene and its application for the adsorption of AR265 and AO7 dyes from water. J Colloid Interface Sci 493:51–61

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Nashath FZ, Chen S, Manickam S, Lim SS, Zhao H, Lester E, Wu T, Pang CH (2020) Synthesis of graphene: potentialcarbon precursors and approaches. Nanotechnol Rev 9(1):1284–1314. https://doi.org/10.1515/ntrev-2020-0100

    Article  CAS  Google Scholar 

  • Zhang Y, Tang ZR, Fu X, Xu YJ (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials. ACS Nano 4(12):7303–7314

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xiong Z, Zhao XS (2011) Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21(11):3634–3640

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang N, Tang ZR, Xu YJ (2012) Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6(11):9777–9789

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Song J, Yang G, Han B (2014a) Large-scale production of high-quality graphene using glucose and ferric chloride. Chem Sci 5(12):4656–4660

    Article  CAS  Google Scholar 

  • Zhang N, Yang MQ, Tang ZR, Xu YJ (2014b) Toward improving the graphene–semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator. ACS Nano 8(1):623–633

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhang RZ, Ma YQ et al (2015) Preparation of cellulose/graphene composite and its applications for triazine pesticides adsorption from water. ACS Sustain Chem Eng 3:396–405

    Article  CAS  Google Scholar 

  • Zhang J, Gao J, Chen Y, Hao X, Jin X (2017) Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results Phys 7:1628–1633

    Article  Google Scholar 

  • Zhao Z, Tian J, Sang Y, Cabot A, Liu H (2015) Structure, synthesis, and applications of TiO2 nanobelts. Adv Mater 27(16):2557–2582

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Shi T, Zhou H (2012) Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation. Appl Surf Sci 258:6204–6211

    Article  CAS  Google Scholar 

  • Zhou L, Alvarez OG, Mazon CS, Chen L, Deng H, Sui M (2016) The roles of conjugations of graphene and Ag in Ag3PO4-based photocatalysts for degradation of sulfamethoxazole. Catal Sci Technol 6:5972–5981

    Article  CAS  Google Scholar 

  • Zhu M, Chen P, Liu M (2011) Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 5(6):4529–4536

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wang Y, Chen Z, Qin L, Yang L, Zhu L et al (2015) Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays. Appl Catal A General 498:159–166

    Article  CAS  Google Scholar 

  • Ziolli RL, Jardim WF (2002) Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO2. J Photochem Photobiol A Chem 147(3):205–212

    Article  CAS  Google Scholar 

  • Zou R, Zhang Z, Yu L, Tian Q, Chen Z, Hu J (2011) A general approach for the growth of metal oxide nanorod arrays on graphene sheets and their applications. Chem Eur J 17(49):13912–13917

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to the Director of CSIR-IICT (Ms. No. IICT/Pubs./2022/053) for providing all the required facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Supriya, Rane, N.V., Chaturvedi, A., Vanka, S.K., Kumari, A. (2023). Biobased Graphene for Synthesis of Nanophotocatalysts in the Treatment of Wastewater: A Review and Future Perspective. In: Pathak, P.D., Mandavgane, S.A. (eds) Biorefinery: A Sustainable Approach for the Production of Biomaterials, Biochemicals and Biofuels. Springer, Singapore. https://doi.org/10.1007/978-981-19-7481-6_7

Download citation

Publish with us

Policies and ethics