Skip to main content
Log in

A facile way to large-scale production of few-layered graphene via planetary ball mill

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In the field of polymer/graphene nanocomposites, massive production and commercial availability of graphene are essential. Exfoliation of graphite to obtain graphene is one of the most promising ways to large-scale production at extremely low cost. In this work we illustrate a facile strategy for mass production of few-layered (≤ 10) graphene (FLG) via the newly explored ball milling. The achieved FLG concentration was determined by UV/Vis spectroscopy. The formation of FLG was proved by measuring the flake thickness by atomic force microscopy (AFM). Further Raman spectral studies indicated that the crystal structure of exfoliated flakes was preserved satisfactorily during this shear-force dominating process. To increase the maximum concentration obtainable, it’s critical to make a good parameter assessment. N-methylpyrrolidone (NMP) was used as a dispersing medium and the effect of milling parameters was systematically and quantitatively investigated, thus providing a criterion to optimize the milling process. We established the optimal values for solvent volume and initial weight of graphite. As for milling time, the production of FLG was enhanced with continuous milling according to the power law, but not linearly with increasing milling time. Moreover, the possible mechanism involved in milling process was also explored. Our work provides a simple method for graphite exfoliation and has great potential for improving thermal and electrical conductivity of polymer composites in the fields of engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y. and Hong, B.H., Nature, 2009, 457(7230): 706

    Article  CAS  Google Scholar 

  2. Li, W., Geng, X., Guo, Y., Rong, J., Gong, Y., Wu, L., Zhang, X., Li, P., Xu, J. and Cheng, G., ACS nano, 2011, 5(9): 6955

    Article  CAS  Google Scholar 

  3. Dai, L., Acc. Che. Res., 2012, 46(1): 31

    Article  Google Scholar 

  4. Wang, H., Liang, Y., Mirfakhrai, T., Chen, Z., Casalongue, H.S. and Dai, H., Nano Res., 2011, 4(8): 729

    Article  CAS  Google Scholar 

  5. Wu, L.M., Liao, S.Q., Zhang, S.J., Bai, X.Y. and Hou, X., Chinese J. Polym. Sci., 2015, 33(7): 1058

    Article  CAS  Google Scholar 

  6. Lee, C., Wei, X., Li, Q., Carpick, R., Kysar, J.W. and Hone, J., Phys. Status Solidi (b), 2009, 246(11-12): 2562

    Article  CAS  Google Scholar 

  7. Neto, A.C., Guinea, F., Peres, N., Novoselov, K.S. and Geim, A.K., Rev. Mod. Phys., 2009, 81(1): 109

    Article  Google Scholar 

  8. Geim, A.K. and Novoselov, K.S., Nat. Mater., 2007, 6(3): 183

    Article  CAS  Google Scholar 

  9. Obraztsov, A.N., Nat. Nanotechnol., 2009, 4(4): 212

    Article  CAS  Google Scholar 

  10. Sutter, P.W., Flege, J.I. and Sutter, E.A., Nat. Mater., 2008, 7(5): 406

    Article  CAS  Google Scholar 

  11. Dreyer, D.R., Park, S., Bielawski, C.W. and Ruoff, R.S., Chem. Soc. Rev., 2010, 39(1): 228

    Article  CAS  Google Scholar 

  12. Ma, W.S., Wu, L., Yang, F. and Wang, S.F., J. Mater. Sci., 2014, 49(2): 562

    Article  CAS  Google Scholar 

  13. Cui, X., Zhang, C., Hao, R. and Hou, Y., Nanoscale, 2011, 3(5): 2118

    Article  CAS  Google Scholar 

  14. Zhou, X., Wu, T., Ding, K., Hu, B., Hou, M. and Han, B., Chem. Commun., 2010, 46(3): 386

    Article  CAS  Google Scholar 

  15. Wang, H., Xia, B., Yan, Y., Li, N., Wang, J.Y. and Wang, X., J. Phys. Chem. B, 2013, 117(18): 5606

    Article  CAS  Google Scholar 

  16. Gudarzi, M.M., Moghadam, M.H.M. and Sharif, F., Carbon, 2013, 64: 403

    Article  CAS  Google Scholar 

  17. Khan, U., O’ Neill, A., Lotya, M., De, S. and Coleman, J.N., Small, 2010, 6(7): 864

    Article  CAS  Google Scholar 

  18. Lotya, M., King, P.J., Khan, U., De, S. and Coleman, J.N., ACS Nano, 2010, 4(6): 3155

    Article  CAS  Google Scholar 

  19. Vadukumpully, S., Paul, J. and Valiyaveettil, S., Carbon, 2009, 47(14): 3288

    Article  CAS  Google Scholar 

  20. Lin, T., Tang, Y., Wang, Y., Bi, H., Liu, Z., Huang, F., Xie, X. and Jiang, M., Energ. Environ. Sci., 2013, 6(4): 1283

    Article  CAS  Google Scholar 

  21. Knieke, C., Berger, A., Voigt, M., Taylor, R.N.K., Röhrl, J. and Peukert, W., Carbon, 2010, 48(11): 3196

    Article  CAS  Google Scholar 

  22. Zhao, W., Fang, M., Wu, F., Wu, H., Wang, L. and Chen, G., J. Mater. Chem., 2010, 20(28): 5817

    Article  CAS  Google Scholar 

  23. Zhao, W., Wu, F., Wu, H. and Chen, G., J. Nanomater., 2010, 2010: 1

    Google Scholar 

  24. Liu, L., Xiong, Z., Hu, D., Wu, G. and Chen, P., Chem. Commun., 2013, 49(72): 7890

    Article  CAS  Google Scholar 

  25. Lv, Y., Yu, L., Jiang, C., Chen, S. and Nie, Z., RSC Adv., 2014, 4(26): 13350

    Article  CAS  Google Scholar 

  26. Leon, V., Quintana, M., Herrero, M.A., Fierro, J.L., de la Hoz, A., Prato, M. and Vazquez, E., Chem. Commun., 2011, 47(39): 10936

    Article  CAS  Google Scholar 

  27. Jeon, I.Y., Choi, H.J., Jung, S.M., Seo, J.M., Kim, M.J., Dai, L. and Baek, J.B., J. Am. Chem. Soc., 2013, 135(4): 1386

    Article  CAS  Google Scholar 

  28. Nandhini, R., Mini, P.A., Avinash, B., Nair, S.V. and Subramanian, K.R.V., Mater. Lett., 2012, 87: 165

    Article  CAS  Google Scholar 

  29. Aparna, R., Sivakumar, N., Balakrishnan, A., Sreekumar Nair, A., Nair, S.V. and Subramanian, K.R.V., J. Renew. Sustain. Ener., 2013, 5(3): 033123

    Article  Google Scholar 

  30. Yao, Y., Lin, Z., Li, Z., Song, X., Moon, K.S. and Wong, C.P., J. Mater. Chem., 2012, 22(27): 13494

    Article  CAS  Google Scholar 

  31. Mao, M., Chen, S., He, P., Zhang, H. and Liu, H., J. Mater. Chem. A, 2014, 2(12): 4132

    Article  CAS  Google Scholar 

  32. Lin, T., Chen, J., Bi, H., Wan, D., Huang, F., Xie, X. and Jiang, M., J. Mater. Chem. A, 2013, 1(3): 500

    Article  CAS  Google Scholar 

  33. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I., Holland, B., Byrne, M. and Gun’ Ko, Y.K., Nat. Nanotechnol., 2008, 3(9): 563

    Article  CAS  Google Scholar 

  34. Ferralis, N., J. Mater. Sci., 2010, 45(19): 5135

    Article  CAS  Google Scholar 

  35. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. and Ruoff, R.S., Carbon, 2007, 45(7): 1558

    Article  CAS  Google Scholar 

  36. Khan, U., O’Neill, A., Porwal, H., May, P., Nawaz, K. and Coleman, J.N., Carbon, 2012, 50(2): 470

    Article  CAS  Google Scholar 

  37. O’Neill, A., Khan, U., Nirmalraj, P.N., Boland, J. and Coleman, J.N., J. Phys. Chem. C, 2011, 115(13): 5422

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu  (傅强).

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 51421061 and 51210005). We would like to express our sincere thanks to Guangdong Shengyi Technology Limited Corporation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Qi, Xd., Zhu, Yl. et al. A facile way to large-scale production of few-layered graphene via planetary ball mill. Chin J Polym Sci 34, 1270–1280 (2016). https://doi.org/10.1007/s10118-016-1836-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-016-1836-y

Keywords

Navigation