Skip to main content

Porous Carbon-Based Sensors and Their Applications

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Abstract

The demand for new sensors with specific and highly enhanced features has been on the rise today. Factors like sensitivity, response time, recovery rate, cost, size, ease of operation, and reliability play a crucial role in determining the quality of a sensor system. Although, currently, a large variety of sensors are available to monitor fluid flow, temperature, humidity, and pressure, among others. Most of these sensors are expensive, not easy to operate, and have a lower response rate, making them unsuitable for prolonged and extensive use. To improve upon the criteria above, porous carbon-based materials have supported the most promising advancement in material properties, enabling significant advancements to overcome limits previously associated with conventional sensor materials. Carbon-based structures have several advantages over commonly used sensor materials, owing to their superior physio-chemical properties. These carbonaceous structures can be easily synthesized and scaled up to yield fewer densification defects. Furthermore, carbon-based materials have proven to be a more cost-effective and environmentally friendly alternative to currently used electronic materials and are more efficient in their performance. Porous carbon-based materials are being investigated as a viable candidate for sensing applications as their mesoporous and microporous structures aid in the adsorption of the sensing element. Controlled pore size, higher surface area, more accessible synthesis techniques, potential to functionalize with various materials, and physical and chemical loadable active sites are some of the characteristics that make porous carbon-based materials a suitable sensing material with applications in multiple domains. Porous bio-enzymatic sensors based on carbon, electrochemical sensors, multifunctional health monitoring sensors, detection of pesticide residues, detection of DNA-RNA, drug delivery system, bio-electrode have been widely reported in recent years and are gaining considerable interest in the field of sensors. This chapter covers the latest development concerning the manufacture of porous carbon-based sensors, their mechanical, physio-chemical, and biomedical applications, and how they compare with the already available sensor devices. The prospects of porous carbon-based sensors will also be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Google Scholar 

  3. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to evaluating surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  4. Jiang H, Ma J, Li C (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater 24(30):4197–4202

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Wickramaratne NP, Qiao SZ, Jaroniec M (2015) Molecular-based design and emerging applications of nanoporous carbon spheres. Nat Mater 14(8):763–774

    Article  CAS  PubMed  Google Scholar 

  6. Wang F, Liu S, Shu L, Tao XM (2017) Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon 121:353–367

    Article  CAS  Google Scholar 

  7. Choong CL, Shim MB, Lee BS, Jeon S, Ko DS, Kang TH, Bae J, Lee SH, Byun KE, Im J, Jeong YJ, Park CE, Park JJ, Chung UI (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26(21):3451–3458

    Article  CAS  PubMed  Google Scholar 

  8. Liu Q, Chen J, Li Y, Shi G (2016) High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 10:7901–7906

    Article  CAS  PubMed  Google Scholar 

  9. Lee D, Lee H, Jeong Y, Ahn Y, Nam G, Lee Y (2016) Highly sensitive, transparent, and durable pressure sensors based on sea-urchin shaped metal nanoparticles. Adv Mater 28:9364–9369

    Article  CAS  PubMed  Google Scholar 

  10. Gong S, Zhao Y, Yap LW, Shi Q, Wang Y, Bay JAPB, Lai DTH, Uddin H, Cheng W (2016) Fabrication of highly transparent and flexible nanomesh electrode via self-assembly of ultrathin gold nanowires. Adv Electron Mater 2(7):1600121

    Article  Google Scholar 

  11. Lou Z, Chen S, Wang L, Shi R, Li L, Jiang K, Chen D, Shen G (2017) Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy 38:28–35

    Article  CAS  Google Scholar 

  12. Hou C, Wang H, Zhang Q, Li Y, Zhu M (2014) Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv Mater 26:5018–5024

    Article  CAS  PubMed  Google Scholar 

  13. Tien NT, Jeon S, Kim DI, Trung TQ, Jang M, Hwang BU, Byun KE, Bae J, Lee E, Tok JBH, Bao Z, Lee NE, Park JJ (2014) A Flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater 26(5):796–804

    Article  PubMed  Google Scholar 

  14. Park J, Kim M, Lee Y, Lee HS, Ko H (2015) Fingertip skin− inspired microstructured ferroelectric skins discriminate static/ dynamic pressure and temperature stimuli. Sci Adv 1:e1500661

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao XH, Ma SN, Long H, Yuan H, Tang CY, Cheng PK, Tsang YH (2018) Multifunctional sensor based on porous carbon derived from metal-organic frameworks for real time health monitoring. ACS Appl Mater Interfaces 10(4):3986–3993

    Article  CAS  PubMed  Google Scholar 

  16. Borchardt L, Zhu QL, Casco ME, Berger R, Zhuang Z, Kaskel S, Feng X, Xu Q (2017) Toward a molecular design of porous carbon materials. Mater Today 20(10):592–610

    Article  CAS  Google Scholar 

  17. Chen J, Xiao G, Duan G, Wu Y, Zhao X, Gong X (2020) Structural design of carbon dots/porous materials composites and their applications. Chem Eng J 421:127743

    Article  Google Scholar 

  18. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    Article  CAS  PubMed  Google Scholar 

  19. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  PubMed  Google Scholar 

  20. Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res 5(3):199–212

    Article  CAS  Google Scholar 

  21. Mondal S, Ganguly S, Das P, Khastgir D, Das NC (2017) Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon-based ethylene methyl acrylate nanocomposites. Compos Part B: Eng 119:41–56

    Article  CAS  Google Scholar 

  22. Sabet M, Mahdavi K (2019) Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions. Appl Surf Sci 463:283–291

    Article  CAS  Google Scholar 

  23. Ganguly S, Mondal S, Das P, Bhawal P, Das TK, Ghosh S, Remanan S, Das NC (2019) An insight into the physico-mechanical signatures of silylated graphene oxide in poly (ethylene methyl acrylate) copolymeric thermoplastic matrix. Macromol Res 27:268–281

    Article  CAS  Google Scholar 

  24. Ma S, Sun D, Simmons JM, Collier CD, Yuan D, Zhou HC (2008) Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130(3):1012–1016

    Article  CAS  PubMed  Google Scholar 

  25. Xia C, Zhu S, Feng T, Yang M, Yang B (2019) Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci 6(23):1901316

    Article  CAS  Google Scholar 

  26. Cheng Y, Wu L, Fang C, Li T, Chen J, Yang M, Zhang Q (2020) Synthesis of porous carbon materials derived from laminaria japonica via simple carbonization and activation for supercapacitors. J Market Res 9(3):3261–3271

    CAS  Google Scholar 

  27. Shin J, Guo J, Zhao T, Guo Z (2019) Functionalized carbon dots on graphene as outstanding non-metal bifunctional oxygen electrocatalyst. Nano-Micro Small 15(16):1900296

    Google Scholar 

  28. Feng H, Xie P, Xue S, Li L, Hou X, Liu Z, Wu D, Wang L, Chu PK (2018) Synthesis of three-dimensional porous reduced graphene oxide hydrogel/carbon dots for high-performance supercapacitor. J Electroanal Chem 808:321–328

    Article  CAS  Google Scholar 

  29. Tabatabaeian K, Simayee M, Fallah-Shojaie A, Mashayekhi F (2019) N-doped carbon nanodots at UiO-66-NH2 as novel nanoparticles for releasing of the bioactive drug, rosmarinic acid and fluorescence imaging. DARU J Pharm Sci 27:307–315

    Article  CAS  Google Scholar 

  30. Wu M, Gao Y, Hu Y, Zhao B, Zhang H (2020) Boosting sodium storage of mesoporous TiO2 nanostructure regulated by carbon quantum dots. Chin Chem Lett 31(3):897–902

    Article  CAS  Google Scholar 

  31. Wang M, Xia Y, Qiu J, Ren X (2019) Carbon quantum dots embedded mesoporous silica for rapid fluorescent detection of acidic gas. Spectrochimica Part A 206:170–176

    Article  CAS  Google Scholar 

  32. Shen Q, You Z, Yu Y, Qin T, Su Y, Wang H, Wu C, Zhang F, Yang H (2018) A carbon quantum dots/porous InVO4 microsphere composite with enhanced photocatalytic activity. Eur J Inorg Chem 9:1080–1086

    Article  Google Scholar 

  33. Li J, Zhang C, Yin M, Zhang Z, Chen Y, Deng Q, Wang S (2019) Surfactant-sensitized covalent organic frameworks-functionalized lanthanide-doped nanocrystals: an ultrasensitive sensing platform for perfluorooctane sulfonate. ACS Omega 4(14):15947–15955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aghaei SM, Monshi MM, Torres I, Zeidi SM, Calizo I (2018) DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: a search for susceptible molecular sensor. Appl Surf Sci 427:326–333

    Article  Google Scholar 

  35. Kreyling WG, Semmler-Behnke M, Chaudhry Q (2010) A complementary definition of nanomaterial. Nano Today 5(3):165–168

    Article  Google Scholar 

  36. Peng LM, Zhang Z, Wang S (2014) Carbon nanotube electronics: recent advances. Mater Today 17(9):433–442

    Article  CAS  Google Scholar 

  37. Tans SJ, Verschueren AR, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52

    Article  CAS  Google Scholar 

  38. Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV (2016) Carbon nanotubes: sensor properties. A review. Modern Electron Mater 2(4):95–105

    Article  Google Scholar 

  39. Holland LM, Doole GJ (2014) Implications of fairness for the design of nitrate leaching policy for heterogeneous New Zealand dairy farms. Agric Water Manag 31(132):79–88

    Article  Google Scholar 

  40. Leng X, Luo D, Xu Z, Wang F (2018) Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sens Actuators, B Chem 1(257):372–381

    Article  Google Scholar 

  41. Vinícius DNB, Thaís LAM, Beatriz RC de Menezes, Renata GR, Victor ANR, Karla FR, Gilmar PT (2019) Carbon nanostructure-based sensors: a brief review on recent advances. Adv Mater Sci Eng 21

    Google Scholar 

  42. Zou Y, Han BX (2001) High-surface-area activated carbon from chinese coal. Energy Fuels 15(6):1383–1386

    Article  CAS  Google Scholar 

  43. Yang T, Lua AC (2003) Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. J Colloid Interface Sci 267(2):408–417

    Article  CAS  PubMed  Google Scholar 

  44. Zhang T, Walawender PW, Fan LT, Fan M, Daugaard D, Brown RC (2004) Preparation of activated carbon from forest and agricultural residues through CO activation. Chem Eng J 105(1–2):53–59

    Article  CAS  Google Scholar 

  45. Marsh H, Rand B (1971) The process of activation of carbons by gasification with CO2-II The role of catalytic impurities. Carbon 9:63–77

    Article  Google Scholar 

  46. Tamai H, Kakii T, Hirota Y, Kummamoto T, Yasuda H (1996) Synthesis of substantial mesoporous activated carbon and its unique adsorption for giant molecules. Chem Mater 8:454–462

    Article  CAS  Google Scholar 

  47. Oya A, Yoshida S, Alcaniz-Monge J, Linares-Soleno A (1995) Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 33(8):1085–1090

    Article  CAS  Google Scholar 

  48. Patel N, Okabe K, Oya A (2002) Designing carbon materials with unique shapes using polymer blending and coating techniques. Carbon 40(3):315–320

    Article  CAS  Google Scholar 

  49. Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A, Yoshida A, Iizuka T (1997) Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 35:1031–1033

    Article  CAS  Google Scholar 

  50. Alcaniz-Monge J, Cazorla-Amores D, Linares-Solano A, Oya A, Sakamoto A, Hosm K (1997) Preparation of general purpose carbon fibers from coal tar pitches with low softening point. Carbon 35:1079–1087

    Article  CAS  Google Scholar 

  51. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227

    Article  CAS  Google Scholar 

  52. Pekala RW, Alviso CT, Kong FM, Hulsey SS (1992) Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids 145:90–98

    Article  CAS  Google Scholar 

  53. Pekala RW, Schaefer DW (1993) Structure of organic aerogels. 1. Morphology and scaling. Macromolecules 26(20):5487–5493

    Google Scholar 

  54. Hamouda HA, Cui S, Dai X, Xiao L, Xie X, Peng H, Ma G (2021) Synthesis of porous carbon material based on biomass derived from hibiscus sabdariffa fruits as active electrodes for high-performance symmetric supercapacitors. RSC Adv 11(1):354–363

    Article  CAS  Google Scholar 

  55. Zhou XL, Zhang H, Shao LM, Lu FH, He PJ (2021) Preparation and application of hierarchical porous carbon materials from waste and biomass: a review. Waste Biomass Valorisation 12:1699–1724

    Google Scholar 

  56. Jeong JH, Lee JS, Roh KC, Kim KB (2017) Multimodal porous carbon derived from ionic liquids: correlation between pore sizes and ionic clusters. Nanoscale 9(38):14672–14681

    Article  CAS  PubMed  Google Scholar 

  57. Zhang L, Cai K, Zhang F, Yue Q (2015) Adsorption of CO2 and H2 on nitrogen-doped porous carbon from ionic liquid precursor. Chem Res Chin Univ 31(1):130–137

    Article  Google Scholar 

  58. Xu F, Wu D, Fu R, Wei B (2017) Design and preparation of porous carbons from conjugated polymer precursors. Mater Today 20(10):629–656

    Article  CAS  Google Scholar 

  59. Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805

    Article  CAS  Google Scholar 

  60. Alatalo SM, Sillanpää M (2020) Hydrothermal carbonization in the synthesis of sustainable porous carbon materials for water treatment. Adv Water Treat 445–503

    Google Scholar 

  61. Al Baroroh LA, Fitria D, Amal MI, Wismogroho AS, Widayatno WB (2018) Facile preparation of porous carbon from coffee bean waste using low temperature solvothermal method. J Phys: Conf Ser 985:012030

    Google Scholar 

  62. Zhou H, Wu S, Wang H, Li Y, Liu X, Zhou Y (2021) The preparation of porous carbon materials derived from bio-protic ionic liquid with application in flexible solid-state supercapacitors. J Hazard Mater 402:124023

    Article  CAS  PubMed  Google Scholar 

  63. Duraisamy V, Palanivel S, Thangamuthu R, Kumar SMS (2018) KIT-6 Three dimensional template derived mesoporous carbon for oxygen reduction reaction: effect of template removal on catalytic activity. Chem Select 3(42):11864–11874

    CAS  Google Scholar 

  64. Fulvio PF, Jaroniec M, Liang C, Dai S (2008) Polypyrrole-based nitrogen-doped carbon replicas of SBA-15 and SBA-16 containing magnetic nanoparticles. J Phys Chem C 112(34):13126–13133

    Article  CAS  Google Scholar 

  65. Silva R, Voiry D, Chhowalla M, Asefa T (2013) Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons. J Am Chem Soc 135(21):7823–7826

    Article  CAS  PubMed  Google Scholar 

  66. Bai X, Wang Z, Luo J, Wu W, Liang Y, Tong X, Zhao Z (2020) Hierarchical porous carbon with interconnected ordered pores from biowaste for high-performance supercapacitor electrodes. Nanoscale Res Lett 15(1):88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang Y, Bai X, Wang F, Qin H, Yin C, Kang S, Li X, Zuo Y, Cui L (2016) Surfactant-assisted nanocasting route for synthesis of highly ordered mesoporous graphitic carbon and its application in CO2 adsorption. Sci Rep 6:26673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu S, Wang Z, Han T, Fei T, Zhang T, Zhang H (2018) Solvent-free synthesis of mesoporous carbon employing KIT-6 as hard template for removal of aqueous rhodamine B. J Porous Mater 26:941–950

    Article  Google Scholar 

  69. Vinu A, Anandan S, Anand C, Srinivasu P, Ariga K, Mori T (2008) Fabrication of partially graphitic three-dimensional nitrogen-doped mesoporous carbon using polyaniline nanocomposite through nanotemplating method. Microporous Mesoporous Mater 109(1–3):398–404

    Article  CAS  Google Scholar 

  70. Wu YH, Ma YL, Sun YG, Xue K, Ma QL, Ma T, Ji WX (2020) Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal. J Clean Prod 277:123186

    Article  CAS  Google Scholar 

  71. Pei YR, Yang JH, Choi G, Choy JH (2020) A geopolymer route to micro and meso-porous carbon. RSC Adv 10(12):6814–6821

    Article  PubMed  PubMed Central  Google Scholar 

  72. Costa MBG, Juárez JM, Anunziata OA (2016) Synthesis and characterization of CMK porous carbons modified with metals applied to hydrogen uptake and storage. Microporous and Mesoporous Materials, Chapter 3, Microporous and Mesoporous Materials, Intechopen 51–85

    Google Scholar 

  73. Fuertes AB (2004) Low-Cost synthetic route to mesoporous carbons with narrow pore size distributions and tunable porosity through silica xerogel templates. Chem Mater 16(3):449–455

    Article  CAS  Google Scholar 

  74. Meng Y, Zou X, Huang X, Goswami A, Liu Z, Asefa T (2014) Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation. Adv Mater 26(37):6510–6516

    Article  CAS  PubMed  Google Scholar 

  75. Shin Y, Fryxell GE, Um W, Parker K, Mattigod SV, Skaggs R (2007) Sulfur-functionalized mesoporous carbon. Adv Func Mater 17(15):2897–2901

    Article  CAS  Google Scholar 

  76. Yang CM, Weidenthaler C, Spliethoff B, Mayanna M, Schüth F (2005) Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chem Mater 17(2):355–358

    Article  CAS  Google Scholar 

  77. Lee J, Jin S, Hwang Y, Park JG, Park HM, Hyeon T (2005) Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods. Carbon 43(12):2536–2543

    Article  CAS  Google Scholar 

  78. Li JR, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong HK, Balbuena PB, Zhou HC (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255(15–16):1791–1823

    Article  CAS  Google Scholar 

  79. Jiang D, Xu P, Wang H, Zeng G, Huang D, Chen M, Lai C, Zhang C, Wan J, Xue W (2018) Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants. Coord Chem Rev 376:449–466

    Article  CAS  Google Scholar 

  80. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY (2014) Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43(16):6011–6061

    Article  CAS  PubMed  Google Scholar 

  81. Yin P, Yao T, Wu Y, Zheng L, Lin Y, Liu W, Ju H, Zhu J, Hong X, Deng Z, Zhou G, Wei S, Li Y (2016) Single cobalt atoms with precise n-coordination as superior oxygen reduction reaction catalysts. Angewandte Chemie Int Edn 55(36):10800–10805

    Article  CAS  Google Scholar 

  82. Fang Y, Ma Y, Zheng M, Yang P, Asiri AM, Wang X (2018) Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coord Chem Rev 373:83–115

    Article  CAS  Google Scholar 

  83. Khan NA, Hasan Z, Jhung SH (2018) Beyond pristine metal-organic frameworks: preparation and application of nano-structured, nanosized, and analogous MOFs. Coord Chem Rev 376:20–45

    Article  CAS  Google Scholar 

  84. Yu JT, Chen Z, Sun J, Huang ZT, Zheng QY (2012) Cyclotricatechylene based porous crystalline material: synthesis and applications in gas storage. J Mater Chem 22(12):5369–5373

    Article  CAS  Google Scholar 

  85. Li Y, Yang RT (2007) Hydrogen storage in metal-organic and covalent-organic frameworks by spillover. AIChE J 54(1):269–279

    Article  Google Scholar 

  86. Wu H, Gong Q, Olson DH, Li J (2012) Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem Rev 112(2):836–868

    Article  CAS  PubMed  Google Scholar 

  87. Doonan CJ, Tranchemontagne DJ, Glover TG, Hunt JR, Yaghi OM (2010) Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2(3):235–238

    Article  CAS  PubMed  Google Scholar 

  88. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (2011) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112(2):724–781

    Article  PubMed  Google Scholar 

  89. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67

    Article  CAS  PubMed  Google Scholar 

  90. Ding SY, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42(2):548–568

    Article  CAS  PubMed  Google Scholar 

  91. Duan Z, Henkelman G (2020) Identification of active sites of pure and nitrogen-doped carbon materials for oxygen reduction reaction using constant-potential calculations. J Phys Chem C 124(22):12016–12023

    Article  CAS  Google Scholar 

  92. Rodríguez-Corvera CL, Fajardo-Díaz JL, Cortés-López AJ, Jiménez-Ramírez LE, Muñoz-Sandoval E, López-Urías F (2019) Nitrogen-doped carbon fiber sponges by using different nitrogen precursors: synthesis, characterization, and electrochemical activity. Mater Today Chem 14:1–13

    Google Scholar 

  93. Tan H, Liu J, Huang G, Qian YX, Deng Y, Chen G (2018) Understanding the roles of sulfur doping for enhancing of hydrophilicity and electrochemical performance of N, S-Codoped hierarchically porous carbon. ACS Appl Energy Mater 1(10):5599–5608

    CAS  Google Scholar 

  94. Li JF, Zhong CY, Huang JR, Chen Y, Wang Z, Liu ZQ (2019) Carbon dots decorated three-dimensionally ordered macroporous bismuth-doped titanium dioxide with efficient charge separation for high performance photocatalysis. J Colloid Interface Sci 553:758–767

    Article  CAS  PubMed  Google Scholar 

  95. Cheng Q, Xia S, Tong J, Wu K (2015) Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon. Analytica Chemica Acta 887:75–81

    Article  CAS  Google Scholar 

  96. Lee J, Kim S, Shin H (2021) Hierarchial porous carbon electrodes with sponge-like edge structures for the sensitive electrochemical detection of heavy metals. Sensors 21:1–15

    CAS  Google Scholar 

  97. Erdmann CA, Apte MG (2004) Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset. Indoor Air 14:127–134

    Article  PubMed  Google Scholar 

  98. Baranov A, Spirjakin D, Akbari S, Somov A (2015) Optimization of power consumption for gas sensor nodes: a survey. Sens Actuators, A 233:279–289

    Article  CAS  Google Scholar 

  99. Molina A, Escobar-Barrios V, Oliva J (2020) A review on hybrid and flexible CO2 gas sensors. Synth Met 270:116602

    Article  CAS  Google Scholar 

  100. Kumar S, Pavelyev V, Mishra P, Tripathi N (2018) A Review on chemiresistive gas sensors based on carbon nanotubes: device and technology transformation. Sens Actuators, A 283:174–186

    Article  CAS  Google Scholar 

  101. Han M, Jung S, Lee Y, Jung D, Kong SH (2021) PEI-functionalized carbon nanotube thin film sensor for CO2 gas detection at room temperature. Micromachines 12(9):1053

    Article  PubMed  PubMed Central  Google Scholar 

  102. Xu Q, Li W, Ding L, Yang W, Xiao H, Ong WJ (2019) Function-driven engineering of 1D Carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale 11:1475–1504

    Article  CAS  PubMed  Google Scholar 

  103. Chen S, Takata T, Domen K (2017) Particulate photocatalysts for overall water splitting. Nat Rev Mater 2(10):17050

    Article  CAS  Google Scholar 

  104. Ong WJ, Tan LL, Chai SP, Yong ST, Mohamed AR (2014) Highly reactive (001) facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale 6(4):1946–2008

    Article  CAS  PubMed  Google Scholar 

  105. Sun Z, Zheng H, Li J, Du P (2015) Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ Sci 8(9):2668–2676

    Article  CAS  Google Scholar 

  106. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  PubMed  Google Scholar 

  107. Long H, Chan L, Harley TA, Luna LE, Tang Z, Shi T, Zettl A, Carraro C, Worsley MA, Maboudian R (2017) 3D MoS2 aerogel for ultrasensitive NO2 detection and its tunable sensing behaviour. Adv Mater Interfaces 4(16)

    Google Scholar 

  108. Zhang Z, Liu K, Feng Z, Bao Y, Dong B (2016) Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic h2 production based on photoinduced interfacial charge transfer. Sci Rep 6(1):19221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang H, Bao J, Qi Y, Zhao J, Hu Y, Wu W, Wu X, Zhong D, Huo D, Hou C (2020) A disposable and sensitive non-enzymatic glucose sensor based on 3D graphene/Cu2O modified carbon paper electrode. Anal Chim Acta 1135:12–19

    Article  CAS  PubMed  Google Scholar 

  110. Parashuram L, Sreenivasaa S, Akshatha S, Udayakumar V, Sandeep kumar S (2019) A non-enzymatic electrochemical sensor based on ZrO2: Cu(I) nanosphere modified carbon paste electrode for electro-catalytic oxidative detection of glucose in raw Citrus aurantium var. sinensis. Food Chem 300:125178

    Google Scholar 

  111. Tam TV, Hur SH, Chung JS, Choi WM (2021) Novel paper- and fiber optic-based fluorescent sensor for glucose detection using aniline-functionalized graphene quantum dots. Sens Actuators, B Chem 329:129250

    Article  CAS  Google Scholar 

  112. Vinodh R, Gopi CVVM, Kummara VGR, Atchudan R, Ahamad T, Sambasivam S, Yi M, Obaidat IM, Kim HJ (2020) A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications. J Energy Storage 32:101831

    Article  Google Scholar 

  113. Sharma V, Sahoo A, Sharma Y, Mohanty P (2015) Synthesis of nanoporous hypercrosslinked polyaniline (HCPANI) for gas sorption and electrochemical supercapacitor applications. RSC Adv 5(57):45749–45754

    Article  CAS  Google Scholar 

  114. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ji H, Zeng W, Li Y (2019) Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 11:22664–22684

    Article  CAS  PubMed  Google Scholar 

  116. Geng X, Lahem D, Zhang C, Li CJ, Olivier MG, Debliquy M (2019) Visible light enhanced black NiO sensors for ppb-level NO2 detection at room temperature. Ceram Int 45(4):4253–4261

    Article  CAS  Google Scholar 

  117. Melios C, Panchal V, Edmonds K, Lartsev A, Yakimova R, Kazakova O (2018) Detection of ultralow concentration NO2 in complex environment using epitaxial graphene sensors. ACS Sensors 3(9):1666–1674

    Article  CAS  PubMed  Google Scholar 

  118. Park J, Kim Y, Park SY, Sung SJ, Jang HW, Park CR (2020) Band gap engineering of graphene oxide for ultrasensitive NO2 gas sensing. Carbon. https://doi.org/10.1016/j.carbon.2019.11.063

  119. Achary LSK, Aniket K, Bapun B, Pratap SN, Nilakantha T, Jyoti PK, Priyabrat D (2018) Reduced graphene oxide-CuFe2O4 nanocomposite: a highly sensitive room temperature NH3 gas sensor. Sens Actuators, B Chem 272:100–109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Ganesapillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Govardhan, K., Ramanathan, P., Ganesapillai, M. (2023). Porous Carbon-Based Sensors and Their Applications. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_14

Download citation

Publish with us

Policies and ethics