Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 282 Accesses

Abstract

Detonation is one of the most distinguished phenomena in gas dynamics, and it is characterized by nonlinearity, strong discontinuity and the tight coupling of chemical reaction and shock wave. A detonation wave is a supersonic combustion wave across which the pressure and temperature of combustion products increase sharply. Since the phenomenon of detonation was first observed scientifically over one hundred years ago, there have been numerous studies on detonations, from fundamental physics to application technologies, such as severe explosion prevention, supernovas in astrophysics, and for military purposes. Detonation has been “applied” for military and mining and observed in nature but was not well understood. In the last two decades, detonation applications in aerospace propulsion and high-enthalpy shock tunnels have attracted worldwide attention. In this chapter, the origin and current understanding of gaseous detonation are briefly reviewed at first, and then, a description of the critical issues in detonation research is given, which will be further discussed in the following chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abel FA (1874) Contributions to the history of explosive agents, (Second memoir). Philos Trans Royal Soc 164:337–395

    Google Scholar 

  2. Berthelot M, Vieille P (1881) On the velocity of propagation of explosive processes in gases. C R Hebd Seances Acad Sci 93:18–21

    Google Scholar 

  3. Mallard E, Le Chatelier HL (1883) Recherches expérimentales et théoriques sur la combustion des mélanges gazeux explosifs. Annales des Mines, VIII–XVIII

    Google Scholar 

  4. Williams FA (1965) Combustion theory. Addison-Wesley, Boston

    Google Scholar 

  5. Fickett W, Davis WC (1979) Detonation: theory and experiment. University of California Press, Oakland

    Google Scholar 

  6. Turns SR (2012) An introduction to combustion: concepts and applications, 3rd edn. McGraw-Hill Education, New York

    Google Scholar 

  7. Kuo KK (2005) Principles of combustion, 2nd edn. Wiley, Hoboken

    Google Scholar 

  8. Lee JHS (2008) The detonation phenomenon. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Joseph MP (2016) Combustion thermodynamics and dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  10. Yu H, Li B, Chen H (2005) The development of gaseous detonation driving techniques for a shock tube (in Chinese). Adv Mech 35(3):315–322

    Google Scholar 

  11. Jiang Z, Li J, Zhao W, Liu Y, Yu H (2012) Investigating into techniques for extending the test-duration of detonation-driven shock tunnels (in Chinese). Chin J Theor Appl Mech 44(5):824–831

    Google Scholar 

  12. Jiang Z, Yu H (2017) Theories and technologies for duplicating hypersonic flight conditions for ground testing. Natl Sci Rev 4(3):290–296

    Article  Google Scholar 

  13. Lee JHS, Lee BHK, Knystautas R (1966) Shock-flame interaction in a cylindrical chamber. AIAA J 4(4):736–737

    Article  Google Scholar 

  14. Denisov YN, Troshin YK (1959) Pulsating and spinning detonation of gaseous mixtures in tubes. Dokl Akad Nauk SSSR 125(1):110–113

    Google Scholar 

  15. Lee JHS, Soloukhin RI, Oppenheim AK (1969) Current views on gaseous detonation. Astronaut Acta 14:565–584

    Google Scholar 

  16. Kaneshige M, Shepherd JE (1999) Detonation database. Explosion dynamics laboratory report FM97-8. Graduate Aeronautical Laboratories, California Institute of Technology

    Google Scholar 

  17. Pintgen F, Eckett CA, Austin JM, Shepherd JE (2003) Direct observations of reaction zone structure in propagating detonations. Combust Flame 133(3):211–229

    Article  Google Scholar 

  18. Taki S, Fujiwara T (1978) Numerical analysis of two dimensional nonsteady detonation. AIAA J 16(1):73–77

    Article  ADS  Google Scholar 

  19. Gamezo VN, Desbordes D, Oran ES (1999) Formation and evolution of two-dimensional cellular detonations. Combust Flame 116(1–2):154–165

    Article  Google Scholar 

  20. Liu Y, Jiang Z (2008) Reconsideration on the role of the specific heat ratio in Arrhenius law applications. Acta Mechanic Sinica 24(1):261–266

    Article  ADS  MATH  Google Scholar 

  21. Zhang W, Liu Y, Jiang Z (2014) Study on the relationship between ignition delay time and gaseous detonation cell size (in Chinese). Chin J Theor Appl Mech 46(6):977–981

    Google Scholar 

  22. Liu Y, Zhang W, Jiang Z (2016) Relationship between ignition delay time and cell size of H2-air detonation. Int J Hydrogen Energy 41(28):11900–11908

    Article  Google Scholar 

  23. Bourlioux A, Majda AJ (1992) Theoretical and numerical structure for unstable two-dimensional detonations. Combust Flame 90(3–4):211–229

    Article  ADS  Google Scholar 

  24. Oran ES, Weber JW, Stefaniw EI, Lefebvre MH, Anderson JD (1998) A numerical study of a two-dimensional H2–O2–Ar detonation using a detailed chemical reaction model. Combust Flame 113(1–2):147–163

    Article  Google Scholar 

  25. Gavrikov AI, Efimenko AA, Dorofeev SB (2000) A model for detonation cell size prediction from chemical kinetics. Combust Flame 120(1–2):19–33

    Article  Google Scholar 

  26. Sharpe GJ (2001) Transverse waves in numerical simulations of cellular detonations. J Fluid Mech 447(01):31–51

    Article  ADS  MATH  Google Scholar 

  27. Eto K, Tsuboi N, Hayashi AK (2005) Numerical study on three-dimensional CJ detonation waves: detailed propagating mechanism and existence of OH radical. Proc Combust Inst 30(2):1907–1913

    Article  Google Scholar 

  28. Deledicque V, Papalexandris MV (2006) Computational study of three-dimensional gaseous detonation structures. Combust Flame 144(4):821–837

    Article  Google Scholar 

  29. Dou H, Tsai HM, Khoo BC, Qiu J (2008) Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme. Combust Flame 154(4):644–659

    Article  Google Scholar 

  30. Rankine MWJ (1870) On the thermodynamic theory of waves of finite longitudinal isturbances. Philos Trans R Soc 160:277–286

    Article  ADS  Google Scholar 

  31. Hugoniot H (1887) Mémoire sur la propagation du movement dans les corps et plus spécialement dans les gaz parfaits. Première Partie. Journal de l’École Polytechnique 57:3–97

    MATH  Google Scholar 

  32. Hugoniot H (1889) Mémoire sur la propagation du movement dans les corps et plus spécialement dans les gaz parfaits. Deuxième Partie. Journal de l’École Polytechnique 58:1–125

    MATH  Google Scholar 

  33. Johnson JN, Chéret R (1998) Classic papers in shock compression science. Springer, New York

    Book  MATH  Google Scholar 

  34. Chapman DL (1899) On the rate of explosion in gases. Phil Mag 47(284):90–104

    Article  MATH  Google Scholar 

  35. Jouguet E (1905) On the propogation of chemical reaction in gases. Journal de Mathématiques Pures et Appliquées 7:347–425

    Google Scholar 

  36. Jouguet E (1906) On the propagation of chemical reaction in gases. Journal de Mathématiques Pures et Appliquées 2:5–85

    MATH  Google Scholar 

  37. Jouguet E (1917) Macanique des Explosifs. Octava Doin et Fils, Paris

    Google Scholar 

  38. Zel’dovich YB (1940) On the theory of the propagation of detonation in gaseous systems. Tech Rep Arch Image Libr 10(1261):543–568

    Google Scholar 

  39. Von Neumann J (1942) Theory of detonation waves. In: von Neumann J (ed) Collected works, vol 6. New York

    Google Scholar 

  40. Dӧring W (1943) On detonation processes in gases. Ann Phys 43:421–436

    Article  Google Scholar 

  41. Lee JHS (1977) Initiation of gaseous detonation. Annu Rev Phys Chem 28:75–104

    Article  ADS  Google Scholar 

  42. Zel’dovich YB, Librovich VB, Makhviladze GM, Sivashinsky GI (1970) On the development of detonation in a non-uniformly preheated gas. Astronautica Acta 15(5):313–321

    Google Scholar 

  43. Lee JHS, Lee BHK, Knystautas R (1966) Direct initiation of cylindrical gaseous detonations. Phys Fluids 9:221–222

    Article  ADS  Google Scholar 

  44. Lee JHS (1984) Dynamic parameters of gaseous detonations. Annu Rev Fluid Mech 16:311–336

    Article  ADS  Google Scholar 

  45. Lee JHS, Knystautas R, Frieman A (1984) High-speed turbulent deflagration and transition to detonation in H2-air mixtures. Combust Flame 56(2):227–239

    Article  Google Scholar 

  46. Urtiew PA, Oppenheim AK (1966) Experimental observation of the transition to detonation in an explosive gas. Proc Roy Soc A 295(1440):13–28

    ADS  Google Scholar 

  47. Khokhlov AM, Oran ES, Wheeler JC (1997) A theory of deflagration-to-detonation transition in unconfined flames. Combust Flame 108(4):503–517

    Article  Google Scholar 

  48. Kessler DA, Gamezo VN, Oran ES (2010) Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems. Combust Flame 157(11):2063–2077

    Article  Google Scholar 

  49. Gamezoa VN, Oran ES, Khokhlov AM (2005) Three-dimensional reactive shock bifurcation. Proc Combust Inst 30(2):1841–1847

    Article  Google Scholar 

  50. Goodwin GB, Houim RW, Oran ES (2016) Shock transition to detonation in channels with obstacles. Proc Combust Inst 36(2):2717–2724

    Article  Google Scholar 

  51. Taylor GI (1950) The formation of a blast wave by a very intense explosion I. Theoretical discussion. Proc Roy Soc A 201(1065):159–174

    Google Scholar 

  52. Lee JHS, Higgins AJ (1999) Comments on criteria for direct initiation of detonation. Phil Trans R Soc A 357(1764):3503–3521

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Deng B, Hu Z, Teng H, Jiang Z (2007) Numerical investigation on detonation cell evolution in a channel with area-changing cross section. Sci China, Ser G 50(6):797–808

    Article  MATH  Google Scholar 

  54. Evans M, Given F, Picheson W (1955) Effects of attenuating materials on detonation induction distances in gases. J Appl Phys 26(9):1111–1113

    Article  ADS  Google Scholar 

  55. Radulescu MI, Lee JHS (2002) The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust Flame 131(1–2):29–46

    Article  Google Scholar 

  56. Radulescu MI, Higgins AJ, Murray SB (2003) An experimental investigation of the direction initiation of cylindrical detonations. J Fluid Mech 480(1):1–24

    Article  ADS  MATH  Google Scholar 

  57. Lee JHS, Knystautas R, Yoshikawa N (1978) Photochemical initiation of gaseous detonations. Acta Astronaut 5:971–982

    Article  ADS  Google Scholar 

  58. Thomas GO, Jones A (2000) Some observations of the jet initiation of detonation. Combust Flame 120(3):392–398

    Article  Google Scholar 

  59. Khokhlov AM, Oran ES (1999) Numerical simulation of detonation initiation in a flame brush: the role of hot spots. Combust Flame 119(4):400–416

    Article  Google Scholar 

  60. Bartenev AM, Gelfand BE (2000) Spontaneous initiation of detonations. Prog Energy Combust Sci 26(1):29–55

    Article  Google Scholar 

  61. Montgomery CJ, Khokhlov AM, Oran ES (1998) The effect of mixing irregularities on mixed-region critical length for deflagration-to-detonation transition. Combust Flame 115(1):38–50

    Article  Google Scholar 

  62. Sharpe GJ, Short M (2003) Detonation ignition from a temperature gradient for a two-step chain-branching kinetics model. J Fluid Mech 476:267–292

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Gu XJ, Emerson DR, Bradley D (2003) Modes of reaction front propagation from hot spots. Combust Flame 133(1–2):63–74

    Article  Google Scholar 

  64. Oran ES, Gamezo VN (2007) Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust Flame 148(1–2):4–47

    Article  Google Scholar 

  65. Brailovsky I, Sivashinsky G (2000) Hydraulic resistance as a mechanism for deflagration-to-detonation transition. Combust Flame 122(4):492–499

    Article  Google Scholar 

  66. Kagan L, Sivashinsky G (2003) The transition from deflagration to detonation in thin channels. Combust Flame 134(4):389–397

    Article  Google Scholar 

  67. Erpenbeck JJ (1962) Stability of steady-state equilibrium detonations. Phys Fluids 5(5):604–614

    Article  ADS  MathSciNet  Google Scholar 

  68. He L, Lee JHS (1995) The dynamical limit of one-dimensional detonations. Phys Fluids 7(5):1151–1158

    Article  ADS  MATH  Google Scholar 

  69. Sharpe GJ (1967) Linear stability of idealized detonations. Proc Roy Soc London Series A Math Phys Eng Sci 1997(453):2603–2625

    MathSciNet  MATH  Google Scholar 

  70. Ng HD, Higgins AJ, Kiyanda CB, Radulescu MI, Lee JHS, Bates KR, Nikiforakis N (2005) Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations. Combust Theor Model 9(1):159–170

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Short M (1997) Multidimensional linear stability of a detonation wave at high activation energy. SIAM J Appl Math 57(2):307–326

    Article  MathSciNet  MATH  Google Scholar 

  72. Henrick AK, Aslam TD, Powers JM (2006) Simulations of pulsating one-dimensional detonations with true fifth order accuracy. J Comput Phys 213(1):311–329

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Clavin P, He L, Willams FA (1997) Multidimensional stability analysis of overdriven gaseous detonations. Phys Fluids 9(12):3764–3785

    Article  ADS  Google Scholar 

  74. Clavin P, Denet B (2002) Diamond patterns in the cellular front of an overdriven detonation. Phys Rev Lett 88(4):044502

    Article  ADS  Google Scholar 

  75. Yao J, Stewart DS (1996) On the dynamics of multi-dimensional detonation waves. J Fluid Mech 309:225–275

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Stewart DS (1998) The shock dynamics of multidimensional condensed and gas-phase detonations. Proc Combust Inst 27(2):2189–2205

    Article  Google Scholar 

  77. Gardner BR, Winter RJ, Moore MJ (1988) Explosion development and deflagration-to-detonation transition in coal dust/air suspensions. In: Symposium (international) on combustion 21(1):335–343

    Google Scholar 

  78. Ajrash MJ, Zanganeh J, Moghtaderi B (2016) Methane-coal dust hybrid fuel explosion properties in a large-scale cylindrical explosion chamber. J Loss Prev Process Ind 40:317–328

    Article  Google Scholar 

  79. Kailasanath K (2003) Recent developments in the research on pulse detonation engines. AIAA J 41(2):145–159

    Article  ADS  Google Scholar 

  80. Roy GE, Frolov SM, Borisov AA, Netzer DW (2004) Pulse detonation propulsion: challenges, current status, and future perspective. Prog Energy Combust Sci 30(6):545–672

    Article  Google Scholar 

  81. Hishida M, Fujiwara T, Wolanski P (2009) Fundamentals of rotating detonations. Shock Waves 19(1):1–10

    Article  ADS  MATH  Google Scholar 

  82. Braun EM, Lu FK, Wilson DR, Camberos JA (2013) Airbreathing rotating detonation wave engine cycle analysis. Aerosp Sci Technol 27(1):201–208

    Article  Google Scholar 

  83. Frolov SM, Dubrovskii AV, Ivanov VS (2013) Three-dimensional numerical simulation of operation process in rotating detonation engine. Prog Propul Phys 4:467–488

    Article  Google Scholar 

  84. Kasahara J, Fujiwara T, Endo T, Arai T (2001) Chapman-Jouguet oblique detonation structure around hypersonic projectiles. AIAA J 39(8):1553–1561

    Article  ADS  Google Scholar 

  85. Alexander DC, Sislian JP (2008) Computational study of the propulsive characteristics of a Shcramjet engine. J Propul Power 24(1):34–44

    Article  Google Scholar 

  86. Bird GA (1957) A note on combustion driven tubes. Royal aircraft establishment, AGARD Report 146

    Google Scholar 

  87. Yu H, Zhao W, Yuan S (1993) Performance of shock tunnel with H2–O2 detonation driver (in Chinese). Aerodyn Exp Meas Control 7(3):38–42

    Google Scholar 

  88. Zhao W, Jiang Z, Saito T, Lin J, Yu H, Takayama K (2005) Performance of a detonation driven shock tunnel. Shock Waves 14(1–2):53–59

    Article  ADS  Google Scholar 

  89. Yu H, Chen H, Zhao W (2006) Advances in detonation driving techniques for a shock tube/tunnel. Shock Waves 15(6):399–405

    Article  ADS  Google Scholar 

  90. Yu H, Esser B, Lenartz M, Grönig H (1992) Gaseous detonation driver for a shock tunnel. Shock Waves 2(4):245–254

    Article  ADS  Google Scholar 

  91. Erdos JI, Calleja J, Tamagno J (1994) Increases in the hypervelocity test envelope of the Hypulse shock-expansion tube. AIAA 94–2524

    Google Scholar 

  92. Bakos RJ, Erdos JI (1995) Options for enhancement of the performance of shock-expansion tubes and tunnels. AIAA 95–0799

    Google Scholar 

  93. Jiang Z, Zhao W, Wang C, Takayama K (2002) Forward-running detonation drivers for high-enthalpy shock tunnels. AIAA J 40(10):2009–2016

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zonglin Jiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, Z., Teng, H. (2022). Introduction. In: Gaseous Detonation Physics and Its Universal Framework Theory. Shock Wave and High Pressure Phenomena. Springer, Singapore. https://doi.org/10.1007/978-981-19-7002-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7002-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7001-6

  • Online ISBN: 978-981-19-7002-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics