Skip to main content
Log in

Gaseous detonation driver for a shock tunnel

  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The concept of a shock tunnel with gaseous detonation driver is discussed. A detonation driver presents an alternative to a free-piston driver because comparable values of high enthalpy can be attained, however, without the fast movement of a heavy piston. Wave diagrams, pressure and temperature distributions are presented. Finally, first experimental results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balcarzak MJ, Johnson MR (1966) The gaseous-detonation driver and its application to shock tube simulation techniques. In: Slawsky ZI, Moulton JF, Filler WS (eds) Proc 5th Int Shock Tube Symp, US Naval Ordn. Lab., White Oak, pp 1111–1128

    Google Scholar 

  • Bartlmä F (1975) Gasdynamik der Verbrennung. Springer, Wien New York, pp 97–101

    Google Scholar 

  • Beck WH, Eitelberg G, McIntyre TJ, Baird JP, Lacey J, Simon H (1992) The high enthalpy shock tunnel (HEG) in Göttingen. In: Takayama K (ed) Proc 18th Symp Shock Waves, Springer, Berlin Heidelberg New York, in press

    Google Scholar 

  • Berets DG, Greene EF, Kistiakowsky GB (1950) Gaseous detonations. I. Stationary waves in hydrogen-oxygen mixtures. J Amer Chem Soc 72:1080–1086

    Google Scholar 

  • Bird GA (1957) A note on combustion driven shock tubes. In: Hufton PA (ed) Hypersonic Facilities in the Aerodynamics Department, Royal Aircraft Establishment. AGARD Rep 146

  • Burtschell Y (1990) Performances, dimensionnement et simulation numerique d'une soufflerie hypersonique a choc reflechi a piston libre. Doctoral thesis, Universite D'Aix Marseille I

  • Coates PB, Gaydon AG (1965) A simple shock tube with detonating driver gas. Proc Roy Soc (London) A283:18–32

    Google Scholar 

  • Esser B (1992) Die Zustandsgrößen im Stoßwellenkanal als Ergebnis eines exakten Riemannlösers. Doctoral thesis, RWTH, Aachen, Shock Wave Laboratory

    Google Scholar 

  • Gealer RL, Churchill SW (1960) Detonation characteristics of hydrogen-oxygen mixtures at high initial pressures. A.I.Ch.E Journal 6:501–505

    Google Scholar 

  • Glass II (1991) Over forty years of continuous research at UTIAS on non-stationary flows and shock waves. Shock Waves 1:75–86

    Google Scholar 

  • Hornung H, Sturtevant B, Belanger J, Sanderson S, Brouillette M (1992) Performance data of the new free-piston shock tunnel T5 at GALCIT. In: Takayama K (ed) Proc 18th Symp Shock Waves, Springer, Berlin Heidelberg New York, in press

    Google Scholar 

  • Itaka S, Takayama K (1992) Characteristic of a detonation driven shock tube. Abstracts of the Symposium on Shock Waves Japan '92, Tokyo, pp 131–132

  • Kanira I (1990) Simulation der Wellenausbreitung im Stoßwellenrohr. Master thesis, RWTH Aachen, Shock Wave Laboratory

    Google Scholar 

  • Lee B (1967) Detonation driven shocks in a shock tube. AIAA J 5:791–792

    Google Scholar 

  • Lee JHS (1984) Dynamic parameters of gaseous detonations. Ann Rev Fluid Mech 16:311–336

    Google Scholar 

  • Meinhold G, Demmig F, Bötticher W (1974) Ionisationsmechanismus in der Relaxationszone schwach instationärer Stoßwellen in Argon und Krypton. Z. Naturforsch. 29a:568–576

    Google Scholar 

  • Morrison WRB, Stalker RJ, Duffin J (1990) New generation of free-piston shock tunnels. In: Kim YW (ed) Current topics in shock waves. Americ Inst Phys, New York, pp 582–587

    Google Scholar 

  • Nettleton MA (1987) Gaseous detonations. Chapman and Hall, London, Chapter 2

    Google Scholar 

  • Oertel H sen. (1966) Stossrohre. Springer Wien New York, pp 509–517

    Google Scholar 

  • Oertel H sen. (1983) 33 years of research by means of shock tubes at the French-German research institute at Saint-Louis. In: Archer RD, Milton BE (eds) Shock tubes and waves. New South Wales University Press, Kensington, pp 3–13

    Google Scholar 

  • Pusch W (1965) Einfluß des Rohrdurchmessers auf die Ausbreitung einer Detonation. Doctoral thesis, Göttingen

  • Stalker RJ (1987) Shock tunnels for real gas hypersonics. In: AGARD Conference Proceedings: Aerodynamics of hypersonic lifting vehicles, AGARD-CP-428, Nov. 1987, paper 4

  • Taylor GI (1950) The dynamics of the combustion products behind planar and spherical detonation fronts in explosives. Proc Roy Soc (London) A 200:235–247

    Google Scholar 

  • Yu H-r (1990) Recent developments in shock tube application. In: Takayama K (ed) Proc of the 1989 Nat Symp on Shock Wave Phenomena. Shock Wave Res Center, Tohoku Univ, Sendai, pp 1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H.r., Esser, B., Lenartz, M. et al. Gaseous detonation driver for a shock tunnel. Shock Waves 2, 245–254 (1992). https://doi.org/10.1007/BF01414760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01414760

Key words

Navigation