Skip to main content

Muscle Mass, Cachexia, and Health-Related Quality of Life in Patients with Hematologic Malignancies

  • Chapter
  • First Online:
Physical Therapy and Research in Patients with Cancer

Abstract

Treatment for hematologic malignancies may result in physical symptoms such as pancytopenia secondary to nutritional deficiencies and bone marrow suppression, nausea, vomiting, anorexia, cancer-induced fatigue, and mental symptoms including anxiety and depression and symptoms associated with the hematologic malignancy itself. These symptoms lead to decreased physical activity, particularly in patients who receive prolonged inpatient treatment. Patients with hematologic malignancies undergo unfavorable body composition changes during active treatment owing to physical inactivity, catabolic effects of cytotoxic, and immunosuppressive therapies, as well as metabolic changes and myopathy secondary to long-term glucocorticoid administration. Therefore, patients with hematologic malignancies are at a high risk of muscle dysfunction and reduced quality of life (QOL). Physical therapy is increasingly being recognized as an important intervention to improve muscle function and QOL. Rehabilitation to improve function and QOL of patients with malignancies usually involves mid- or high-intensity aerobic and resistance exercises. However, mid- or high-intensity exercise is often challenging in patients with hematologic malignancies owing to treatment-induced adverse effects. Fukushima et al. reported that high-frequency low-intensity exercise therapy was useful to maintain muscle function and improve physical function, mental and physical symptoms, and QOL in patients with hematologic malignancies, who underwent chemotherapy. We observed that a behavioral change intervention with feedback on physical function and physical activity may improve voluntary exercise and physical function in patients with hematologic malignancies, who receive chemotherapy. Reportedly, neuromuscular electrical stimulation and whole-body electromyostimulation (WB-EMS) during active oncological treatment safely and effectively improve muscle and physical function and QOL in patients with hematologic cancer. Therefore, this approach may effectively improve muscle function and QOL in patients with hematologic disorders, who are unable to perform mid- or high-intensity exercise as an alternative to low-intensity exercise therapy, behavioral change intervention, and WB-EMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  Google Scholar 

  2. Hori M, Matsuda T, Shibata A, Katanoda K, Sobue T, Nishimoto H, Japan Cancer Surveillance Research Group. Cancer incidence and incidence rates in Japan in 2009: a study of 32 population-based cancer registries for the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn J Clin Oncol. 2015;45(9):884–91.

    Article  Google Scholar 

  3. Barnes B, Kraywinkel K, Nowossadeck E, Schönfeld I, Starker A, et al. Bericht zum Krebsgeschehen in Deutschland. Berlin: Zentrum für Krebsregisterdaten im Robert Koch-Institut; 2016.

    Google Scholar 

  4. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354(17):1813–26.

    Article  CAS  Google Scholar 

  5. Othus M, Kantarjian H, Petersdorf S, Ravandi F, Godwin J, Cortes J, et al. Declining rates of treatment-related mortality in patients with newly diagnosed AML given ‘intense’ induction regimens: a report from SWOG and MD Anderson. Leukemia. 2014;28(2):289–92.

    Article  CAS  Google Scholar 

  6. Buckley SA, Othus M, Estey EH, Walter RB. The treatment-related mortality score is associated with non-fatal adverse events following intensive AML induction chemotherapy. Blood Cancer J. 2015;5(1):e276. https://doi.org/10.1038/bcj.2014.97.

    Article  CAS  Google Scholar 

  7. Dehghani M, Haddadi S, Vojdani R. Signs, symptoms and complications of non-Hodgkin’s lymphoma according to grade and stage in South Iran. Asian Pac J Cancer Prev. 2015;16(8):3551–7.

    Article  Google Scholar 

  8. Kantarjian H, Giles F, List A, Lyons R, Sekeres MA, Pierce S, et al. The incidence and impact of thrombocytopenia in myelodysplastic syndromes. Cancer. 2007;109(9):1705–14.

    Article  CAS  Google Scholar 

  9. Knight K, Wade S, Balducci L. Prevalence and outcomes of anemia in cancer: a systematic review of the literature. Am J Med. 2004;116(suppl 7A):11S–26S.

    Article  Google Scholar 

  10. Lyman GH, Poniewieraski MS, Culakova E. Risk of chemotherapy-induced neutropenic complications when treating patients with non-Hodgkin lymphoma. Expert Opin Drug Saf. 2016;15(4):483–92.

    Article  CAS  Google Scholar 

  11. Grunberg SM, Warr D, Gralla RJ, Rapoport BL, Hesketh PJ, Jordan K, et al. Evaluation of new antiemetic agents and definition of antineoplastic agent emetogenicity–state of the art. Support Care Cancer. 2011;19(suppl 1):S43–7.

    Article  Google Scholar 

  12. Hjermstand MJ, Fossa SD, Oldervoll L, Holte H, Jacobsen AB, Loge JH. Fatigue in long-term Hodgkin’s disease survivors: a follow-up study. J Clin Oncol. 2005;23(27):6587–95.

    Article  Google Scholar 

  13. Bergerot CD, Clark KL, Nonino A, Waliany S, Buso MM, Loscaizo M. Course of distress, anxiety, and depression in hematologic cancer patients: association between gender and grade of neoplasm. Palliat Support Care. 2015;13(2):115–23.

    Article  Google Scholar 

  14. Hall AE, Sanson-Fisher RW, Carey ML, Paul C, Williamson A, Bradstock K, et al. Prevalence and associates of psychological distress in haematological cancer survivors. Support Care Cancer. 2016;24(10):4413–22.

    Article  Google Scholar 

  15. Danaher EH, Ferrans C, Verlen E, Ravandi F, van Besien K, Gelms J, et al. Fatigue and physical activity in patients undergoing hematopoietic stem cell transplant. Oncol Nurs Forum. 2006;33(3):614–24.

    Article  Google Scholar 

  16. Morishita S, Kaida K, Ikegame K, Yoshihara S, Taniguchi K, Okada M, et al. Impaired physiological function and health-related QOL in patients before hematopoietic stem-cell transplantation. Support Care Cancer. 2012;20:821–9.

    Article  Google Scholar 

  17. Wiskemann J, Kuehl R, Dreger P, Schwerdtfeger R, Huber G, Ulrich CM, et al. Efficacy of exercise training in SCT patients–who benefits most? Bone Marrow Transplant. 2014;49(3):443–8.

    Article  CAS  Google Scholar 

  18. Gupta A, Gupta Y. Glucocorticoid-induced myopathy: pathophysiology, diagnosis, and treatment. Indian J Endocrinol Metab. 2013;17(5):913–6.

    Article  Google Scholar 

  19. Macedo AG, Krug AL, Souza LM, Martuscelli AM, Constantino PB, Zago AS, et al. Time-course changes of catabolic proteins following muscle atrophy induced by dexamethasone. Steroids. 2016;107:30–6.

    Article  CAS  Google Scholar 

  20. Greenfield DM, Boland E, Ezaydi Y, Ross RJ, Ahmedzai SH, Snowden JA. Endocrine, metabolic, nutritional and body composition abnormalities are common in advanced intensively-treated (transplanted) multiple myeloma. Bone Marrow Transplant. 2014;49(7):907–12.

    Article  CAS  Google Scholar 

  21. Inaba H, Yang J, Kaste SC, Hartford CM, Motosue MS, Chemaitilly W, et al. Longitudinal changes in body mass and composition in survivors of childhood hematologic malignancies after allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2012;30(32):3991–7.

    Article  Google Scholar 

  22. Hung YC, Bauer J, Horsley P, Waterhouse M, Bashford J, Isenring E. Changes in nutritional status, body composition, quality of life, and physical activity levels of cancer patients undergoing autologous peripheral blood stem cell transplantation. Support Care Cancer. 2013;21(6):1579–86.

    Article  Google Scholar 

  23. Vermaete N, Wolter P, Verhoef G, Gosselink R. Physical activity and physical fitness in lymphoma patients before, during, and after chemotherapy: a prospective longitudinal study. Ann Hematol. 2014;93(3):411–24.

    Article  Google Scholar 

  24. Fukushima T, Nakano J, Ishii S, Natsuzako A, Hirase T, Sakamoto J, et al. Characteristics of muscle function and the effect of cachexia in patients with haematological malignancy. Eur J Cancer Care (Engl). 2019;28(2):e12956.

    Article  Google Scholar 

  25. Morishita S, Kaida K, Tanaka T, Itani Y, Ikegame K, Okada M, et al. Prevalence of sarcopenia and relevance of body composition, physiological function, fatigue, and health-related quality of life in patients before allogeneic hematopoietic stem cell transplantation. Support Care Cancer. 2012;20(12):3161–8.

    Article  Google Scholar 

  26. Xiao DY, Luo S, O’Brian K, Ganti A, Riedell P, Sanfilippo KM, et al. Impact of sarcopenia on treatment tolerance in United States veterans with diffuse large B-cell lymphoma treated with CHOP-based chemotherapy. Am J Hematol. 2016;91(10):1002–7.

    Article  CAS  Google Scholar 

  27. Orgel E, Mueske NM, Sposto R, Gilsanz V, Freyer DR, Mittelman SD. Limitations of body mass index to assess body composition due to sarcopenic obesity during leukemia therapy. Leuk Lymphoma. 2016;59(1):138–45.

    Article  Google Scholar 

  28. Hirota K, Matsuse H, Hashida R, Iwanaga S, Nagafuji K, Shiba N. Risks of sarcopenia in patients with hematological and oncological factors who underwent hematopoietic stem cell transplantation (in Japanese). Jpn J Rehabil Med. 2020;57:352–63.

    Article  Google Scholar 

  29. Fukushima T, Nakano J, Ishii S, Natsuzako A, Sato S, Sakamoto J, et al. Factors associated with muscle function in patients with hematologic malignancies undergoing chemotherapy. Support Care Cancer. 2020;28(3):1433–9.

    Article  Google Scholar 

  30. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95.

    Article  Google Scholar 

  31. Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;18(4):17105.

    Article  Google Scholar 

  32. Forrest LM, McMillan DC, McArdle CS, Angerson WJ, Dunlop DJ. Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable nonsmall-cell lung cancer. Br J Cancer. 2003;89(6):1028–30.

    Article  CAS  Google Scholar 

  33. Douglas E, McMillan DC. Towards a simple objective framework for the investigation and treatment of cancer cachexia: the Glasgow Prognostic Score. Cancer Treat Rev. 2014;40(6):685–91.

    Article  Google Scholar 

  34. McMillan DC. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat Rev. 2013;39(5):534–40.

    Article  Google Scholar 

  35. Strasser-Weippl K, Ludwig H. Psychosocial QOL is an independent predictor of overall survival in newly diagnosed patients with multiple myeloma. Eur J Haematol. 2008;81(5):374–9.

    Google Scholar 

  36. Courneya KS, Sellar CM, Stevinson C, McNeely ML, Peddle CJ, Friedenreich CM, et al. Randomized controlled trial of the effects of aerobic exercise on physical functioning and quality of life in lymphoma patients. J Clin Oncol. 2009;27(27):4605–12.

    Article  Google Scholar 

  37. Else M, Smith AG, Cocks K, Richards SM, Crofts S, Wade R, et al. Patients’ experience of chronic lymphocytic leukaemia: baseline health-related quality of life results from the LRF CLL4 trial. Brit J Haematol. 2008;143(5):690–7.

    Article  Google Scholar 

  38. Gulbrandsen N, Hjermstad MJ, Wisløff F. Interpretation of quality of life scores in multiple myeloma by comparison with a reference population and assessment of the clinical importance of score differences. Eur J Haematol. 2004;72(3):172–80.

    Article  Google Scholar 

  39. Flechtner H, Rüffer JU, Henry-Amar M, Mellink WA, Sieber M, Fermé C, et al. Quality of life assessment in Hodgkin’s disease: a new comprehensive approach. First experiences from the EORTC/GELA and GHSG trials. EORTC Lymphoma Cooperative Group. Groupe D’Etude des Lymphomes de L’Adulte and German Hodgkin Study Group. Ann Oncol. 1998;9:S147–54.

    Article  Google Scholar 

  40. Jones LW, Eves ND, Peterson BL, Garst J, Crawford J, West MJ, et al. Safety and feasibility of aerobic training on cardiopulmonary function and quality of life in postsurgical nonsmall cell lung cancer patients: a pilot study. Cancer. 2008;113(12):3430–9.

    Article  Google Scholar 

  41. Mols F, Aaronson NK, Vingerhoets AJJM, Coebergh JW, Vreugdenhil G, Lybeert MLM, et al. Quality of life among long-term non-Hodgkin lymphoma survivors: a population-based study. Cancer. 2007;109(8):1659–67.

    Article  Google Scholar 

  42. Allart-Vorelli P, Porro B, Baguet F, Michel A, Cousson-Gélie F. Haematological cancer and quality of life: a systematic literature review. Blood Cancer J. 2015;5(4):e305.

    Article  CAS  Google Scholar 

  43. Go SI, Park MJ, Song HN, Kim HG, Kang MH, Kang JH, et al. A comparison of pectoralis versus lumbar skeletal muscle indices for defining sarcopenia in diffuse large B-cell lymphoma -two are better than one. Oncotarget. 2017;8(29):47007–19.

    Article  Google Scholar 

  44. Mosher CE, Redd WH, Rini CM, Burkhalter JE, DuHamel KN. Physical, psychological, and social sequelae following hematopoietic stem cell transplantation: a review of the literature. Psychooncology. 2009;18(2):113–27.

    Article  Google Scholar 

  45. Lanic H, Kraut-Tauzia J, Modzelewski R, Clatot F, Mareschal S, Picquenot JM, et al. Sarcopenia is an independent prognostic factor in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Leuk Lymphoma. 2014;55(4):817–23.

    Article  CAS  Google Scholar 

  46. Chu MP, Lieffers J, Ghosh S, Belch A, Chua NS, Fontaine A, et al. Skeletal muscle density is an independent predictor of diffuse large B-cell lymphoma outcomes treated with rituximab-based chemoimmunotherapy. J Cachexia Sarcopenia Muscle. 2017;8(2):298–304.

    Article  Google Scholar 

  47. Streckmann F, Kneis S, Leifert JA, Baumann FT, Kleber M, Ihorst G, et al. Exercise program improves therapy-related side-effects and quality of life in lymphoma patients undergoing therapy. Ann Oncol. 2014;25(2):493–9.

    Article  CAS  Google Scholar 

  48. Knols RH, de Bruin ED, Uebelhart D, Aufdemkampe G, Schanz U, Stenner-Liewen F, et al. Effects of an outpatient physical exercise program on hematopoietic stem-cell transplantation recipients: a randomized clinical trial. Bone Marrow Transplant. 2011;46(9):1245–55.

    Article  CAS  Google Scholar 

  49. Kushi LH, Doyle C, McCullough M, Rock CL, Demark-Wahnefried W, Bandera EV, et al. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin. 2012;62(1):30–67.

    Article  Google Scholar 

  50. Carballeira E, Censi KC, Maseda A, López-López R, Lorenzo-López L, Millán-Calenti JC. Low-volume cycling training improves body composition and functionality in older people with multimorbidity: a randomized controlled trial. Sci Rep. 2021;11(1):13364.

    Article  CAS  Google Scholar 

  51. Cheng D, Wang X, Hu J, Dai LL, Lv Y, Feng H, et al. Effect of Tai Chi and resistance training on cancer-related fatigue and quality of life in middle-aged and elderly cancer patients. Chin J Integr Med. 2021;27(4):265–72.

    Article  CAS  Google Scholar 

  52. Chang PH, Lai YH, Shun SC, Lin LY, Chen ML, Yang Y, et al. Effects of a walking intervention on fatigue-related experiences of hospitalized acute myelogenous leukemia patients undergoing chemotherapy: a randomized controlled trial. J Pain Symptom Manag. 2008;35(5):524–34.

    Article  Google Scholar 

  53. Chen HM, Tsai CM, Wu YC, Lin KC, Lin CC. Randomised controlled trial on the effectiveness of home-based walking exercise on anxiety, depression and cancer-related symptoms in patients with lung cancer. Br J Cancer. 2015;112(3):138–445.

    Article  Google Scholar 

  54. Fukushima T, Nakano J, Ishii S, Natsuzako A, Sakamoto J, Okita M. Low-intensity exercise therapy with high frequency improves physical function and mental and physical symptoms in patients with haematological malignancies undergoing chemotherapy. Eur J Cancer Care (Engl). 2018;27(6):e12922.

    Article  Google Scholar 

  55. Fong DY, Ho JW, Hui BP, Lee AM, Macfarlane DJ, Leung SS, et al. Physical activity for cancer survivors: meta-analysis of randomised controlled trials. BMJ. 2012;344:e70.

    Article  Google Scholar 

  56. Bluethmann SM, Vernon SW, Gabriel KP, Murphy CC, Bartholomew LK. Taking the next step: a systematic review and meta-analysis of physical activity and behavior change interventions in recent post-treatment breast cancer survivors. Breast Cancer Res Treat. 2015;149(2):331–42.

    Article  Google Scholar 

  57. O’Leary TA, Monti PM. Cognitive-behavioral therapy for alcohol addiction. In: Hoffman SG, Tompson MC, editors. Treating chronic and severe mental disorders. New York: Guilford Press; 2002. p. 234–57.

    Google Scholar 

  58. Lee YM, Park NH, Kim YH. Process of change, decisional balance, self-efficacy and depression across the stages of change for exercise among middle aged women in Korea. J Korean Acad Nurs. 2006;36(4):587–95.

    Article  Google Scholar 

  59. Consolvo S, McDonald D.W, Landay J.A. Theory-driven design strategies for technologies that support behavior change in everyday life. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM. 2009. p. 405–14.

    Google Scholar 

  60. Kwekkeboom KL, Cherwin CH, Lee JW, Wanta B. Mind-body treatments for the pain-fatigue-sleep disturbance symptom cluster in persons with cancer. J Pain Symptom Manag. 2010;39(1):126–38.

    Article  Google Scholar 

  61. Ishii S, Natsuzako A, Fukushima T, Kozu R, Miyata N, Nakano J. The effect of a behavior change intervention with feedback on motor function and physical activity for patients with hematological malignancies undergoing chemotherapy: a historical controlled study. Palliat Care Res. 2021;16(2):123–31. (in Japanese).

    Article  Google Scholar 

  62. Courneya KS, Karvinen KH, Campbell KL, Pearcey RG, Dundas G, Capstick V, et al. Associations among exercise, body weight, and quality of life in a population-based sample of endometrial cancer survivors. Gynecol Oncol. 2005;97(2):422–30.

    Article  Google Scholar 

  63. O’Connor D, Caulfield B, Lennon O. The efficacy and prescription of neuromuscular electrical stimulation (NMES) in adult cancer survivors: a systematic review and meta-analysis. Support Care Cancer. 2018;26(12):3985–4000.

    Article  Google Scholar 

  64. Bax L, Staes F, Verhagen A. Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med. 2005;35(3):191–212.

    Article  Google Scholar 

  65. Crognale D, Crowe L, Devito G, Minogue C, Caulfield B. Neuro-muscular electrical stimulation training enhances maximal aerobic capacity in healthy physically active adults. Annu Int Conf IEEE Eng Med. Biol Soc. 2009:2137–40.

    Google Scholar 

  66. Banerjee P, Caulfield B, Crowe L, Clark AL. Prolonged electrical muscle stimulation exercise improves strength, peak VO2, and exercise capacity in patients with stable chronic heart failure. J Card Fail. 2009;15(4):319–26.

    Article  Google Scholar 

  67. O’Connor D, Fernandez MM, Signorelli G, Valero P, Caulfield B. Personalised and progressive neuromuscular electrical stimulation (NMES) in patients with cancer-a clinical case series. Support Care Cancer. 2019;27(10):3823–31.

    Article  Google Scholar 

  68. Kemmler W, Schliffka R, Mayhew JL, von Stengel S. Effects of whole-body electromyostimulation on resting metabolic rate, body composition, and maximum strength in postmenopausal women: the training and ElectroStimulation trial. J Strength Cond Res. 2010;24(7):1880–7.

    Article  Google Scholar 

  69. Kemmler W, von Stengel S. Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial. Clin Interv Aging. 2013;8:1353–64.

    Article  Google Scholar 

  70. van Buuren F, Mellwig KP, Prinz C, Korber B, Frund A, Fritzsche D, et al. Electrical myostimulation improves left ventricular function and peak oxygen consumption in patients with chronic heart failure: results from the exEMS study comparing different stimulation strategies. Clin Res Cardiol. 2013;102(7):523–34.

    Article  CAS  Google Scholar 

  71. Schink K, Herrmann HJ, Schwappacher R, Meyer J, Orlemann T, Waldmann E, et al. Effects of whole-body electromyostimulation combined with individualized nutritional support on body composition in patients with advanced cancer: a controlled pilot trial. BMC Cancer. 2018;18:886.

    Article  CAS  Google Scholar 

  72. O’Connor D, Lennon O, Wright S, Caulfield B. Self-directed home-based neuromuscular electrical stimulation (NMES) in patients with advanced cancer and poor performance status: a feasibility study Dominic O’Connor, Olive Lennon, Sarah Wright. Brian Caulfield Support Care Cancer. 2020;28(11):5529–36.

    Article  Google Scholar 

  73. Schink K, Reljic D, Herrmann HJ, Meyer J, Mackensen A, Neurath MF, et al. Whole-body electromyostimulation combined with individualized nutritional support improves body composition in patients with hematological malignancies—a pilot study. Front Physiol. 2018;18(9):1808.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishii, S., Hirota, K., Nakano, J. (2022). Muscle Mass, Cachexia, and Health-Related Quality of Life in Patients with Hematologic Malignancies. In: Morishita, S., Inoue, J., Nakano, J. (eds) Physical Therapy and Research in Patients with Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-19-6710-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6710-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6709-2

  • Online ISBN: 978-981-19-6710-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics