Skip to main content

MicroRNA and Their Role in Carcinoma Gallbladder

  • Chapter
  • First Online:
Gallbladder Cancer

Abstract

Gallbladder cancer is a fatal disease with poor prognosis. Patients usually have no specific presenting symptoms in the early-stage disease, and thus common symptoms present at an advanced stage. Conventional chemotherapy and radiation have not shown much improvement in terms of survival and quality of life. MicroRNA technology is a novel and exciting development in cancer diagnostic and therapeutic and may potentially address shortcomings related to the management of gallbladder cancer in the present era. The present chapter gives a detailed review on the role of miRNA in gallbladder cancer and its therapeutic application in the disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu AX, Hong TS, Hezel AF, Kooby DA. Current management of gallbladder carcinoma. Oncologist. 2010;15:168–81. PMID: 20147507. https://doi.org/10.1634/theoncologist.2009-0302.

    Article  CAS  Google Scholar 

  2. Feig JL, Giles KM, Osman I, Franks AG. How microRNAs modify protein production. J Invest Dermatol. 2015;135:e32. PMID: 25882467. https://doi.org/10.1038/jid.2015.99.

    Article  CAS  Google Scholar 

  3. Ross SA, Davis CD. MicroRNA, nutrition, and cancer prevention. Adv Nutr. 2011;2:472–85. PMID: 22332090. https://doi.org/10.3945/an.111.001206.

    Article  CAS  Google Scholar 

  4. Guo Z, Maki M, Ding R, Yang Y, Zhang B, Xiong L. Genome- wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci Rep. 2014;4:5150. PMID: 24889152. https://doi.org/10.1038/srep05150.

    Article  CAS  Google Scholar 

  5. KeXS LCM, Liu DP, Liang CC. MicroRNAs: key participants in gene regulatory networks. Curr Opin Chem Biol. 2003;7:516–23. PMID: 12941428.

    Article  Google Scholar 

  6. Shah AA, Meese E, Blin N. Profiling of regulatory microRNA transcriptomes in various biological processes: a review. J Appl Genet. 2010;51:501–7. PMID: 21063068. https://doi.org/10.1007/BF03208880.

    Article  CAS  Google Scholar 

  7. Panera N, Gnani D, Crudele A, Ceccarelli S, Nobili V, Alisi A. MicroRNAs as controlled systems and controllers in non-alcoholic fatty liver disease. World J Gastroenterol. 2014;20:15079–86. PMID: 25386056. https://doi.org/10.3748/wjg.v20.i41.15079.

    Article  CAS  Google Scholar 

  8. Ha TY. MicroRNAs in human diseases: from cancer to cardiovascular disease. Immune Netw. 2011;11:135–54. PMID: 21860607. https://doi.org/10.4110/in.2011.11.3.135.

    Article  Google Scholar 

  9. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5. PMID: 15372042. https://doi.org/10.1038/nature02871.

    Article  CAS  Google Scholar 

  10. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. PMID: 14744438.

    Article  CAS  Google Scholar 

  11. Weber C. MicroRNAs: from basic mechanisms to clinical application in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2013;33:168–9. PMID: 23325472. https://doi.org/10.1161/ATVBAHA.112.300920.

    Article  CAS  Google Scholar 

  12. Leonardi GC, Candido S, Carbone M, Colaianni V, Garozzo SF, Cinà D, Libra M. microRNAs and thyroid cancer: biological and clinical significance (review). Int J Mol Med. 2012;30:991–9. PMID: 22895530. https://doi.org/10.3892/ijmm.2012.1089.

    Article  CAS  Google Scholar 

  13. Yeom KH, Lee Y, Han J, Suh MR, Kim VN. Characterization of DGCR8/pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res. 2006;34:4622–9. PMID: 16963499. https://doi.org/10.1093/nar/gkl458.

    Article  CAS  Google Scholar 

  14. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–40. PMID: 15531877. https://doi.org/10.1038/nature03120.

    Article  CAS  Google Scholar 

  15. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–16. PMID: 14567918.

    Article  CAS  Google Scholar 

  16. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123:631–40. PMID: 16271387. https://doi.org/10.1016/j.cell.2005.10.022.

    Article  CAS  Google Scholar 

  17. Djuranovic S, Nahvi A, Green R. A parsimonious model for gene regulation by miRNAs. Science. 2011;331:550–3. PMID: 21292970. https://doi.org/10.1126/science.1191138.

    Article  CAS  Google Scholar 

  18. Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, Fernandez AF, Davalos V, Villanueva A, Montoya G, Yamamoto H, Schwartz S, Esteller M. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell. 2010;18:303–15. PMID: 20951941. https://doi.org/10.1016/j.ccr.2010.09.007.

    Article  CAS  Google Scholar 

  19. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91:827–87. PMID: 21742789. https://doi.org/10.1152/physrev.00006.2010.

    Article  CAS  Google Scholar 

  20. Stahlhut Espinosa CE, Slack FJ. The role of microRNAs in cancer. Yale J Biol Med. 2006;79:131–40. PMID: 17940623.

    Google Scholar 

  21. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumour suppressors. Dev Biol. 2007;302:1–12. PMID: 16989803. https://doi.org/10.1016/j.ydbio.2006.08.028.

    Article  CAS  Google Scholar 

  22. Mraz M, Pospisilova S. MicroRNAs in chronic lymphocytic leukemia: from causality to associations and back. Expert Rev Hematol. 2012;5:579–81. PMID: 23216588. https://doi.org/10.1586/ehm.12.54.

    Article  CAS  Google Scholar 

  23. Kusenda B, Mraz M, Mayer J, Pospisilova S. MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006;150:205–15. PMID: 17426780.

    Article  CAS  Google Scholar 

  24. Deng S, Calin GA, Croce CM, Coukos G, Zhang L. Mechanisms of microRNA deregulation in human cancer. Cell Cycle. 2008;7:2643–6. PMID: 18719391.

    Article  CAS  Google Scholar 

  25. Yu Z, Baserga R, Chen L, Wang C, Lisanti MP, Pestell RG. microRNA, cell cycle, and human breast cancer. Am J Pathol. 2010;176:1058–64. PMID: 20075198. https://doi.org/10.2353/ajpath.2010.090664.

    Article  CAS  Google Scholar 

  26. Liang LH, He XH. Macro-management of microRNAs in cell cycle progression of tumour cells and its implications in anti-cancer therapy. Acta Pharmacol Sin. 2011;32:1311–20. PMID: 21909123. https://doi.org/10.1038/aps.2011.103.

    Article  CAS  Google Scholar 

  27. Cui W, Zhang S, Shan C, Zhou L, Zhou Z. microRNA-133a regulates the cell cycle and proliferation of breast cancer cells by targeting epidermal growth factor receptor through the EGFR/Akt signalling pathway. FEBS J. 2013;280:3962–74. PMID: 23786162. https://doi.org/10.1111/febs.12398.

    Article  CAS  Google Scholar 

  28. Giglio S, Cirombella R, Amodeo R, Portaro L, Lavra L, Vecchione A. MicroRNA miR-24 promotes cell proliferation by targeting the CDKs inhibitors p27Kip1 and p16INK4a. J Cell Physiol. 2013;228:2015–23. PMID: 23553486. https://doi.org/10.1002/jcp.24368.

    Article  CAS  Google Scholar 

  29. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140:3079–93. PMID: 23861057. https://doi.org/10.1242/dev.091744.

    Article  CAS  Google Scholar 

  30. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25:5220–7. PMID: 16936740. https://doi.org/10.1038/sj.onc.1209615.

    Article  CAS  Google Scholar 

  31. Duronio RJ, Xiong Y. Signaling pathways that control cell proliferation, vol. 5. Cold Spring Harb Perspect Biol; 2013. p. a008904. PMID: 23457258. https://doi.org/10.1101/cshperspect.a008904.

    Book  Google Scholar 

  32. Denicourt C, Dowdy SF. Cip/kip proteins: more than just CDKs inhibitors. Genes Dev. 2004;18:851–5. PMID: 15107401. https://doi.org/10.1101/gad.1205304.

    Article  CAS  Google Scholar 

  33. SeoYH JYE, Choi SK, Rew JS, Park CS, Kim SJ. Prognostic significance of p21 and p53 expression in gastric cancer. Korean J Intern Med. 2003;18:98–103. PMID: 12872447.

    Article  Google Scholar 

  34. Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell. 2008;14:159–69. PMID: 18267085. https://doi.org/10.1016/j.devcel.2008.01.013.

    Article  CAS  Google Scholar 

  35. Cánepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, Ogara MF. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life. 2007;59:419–26. PMID: 17654117. https://doi.org/10.1080/15216540701488358.

    Article  CAS  Google Scholar 

  36. Wang S, Olson EN. AngiomiRs—key regulators of angiogenesis. Curr Opin Genet Dev. 2009;19:205–11. PMID: 19446450. https://doi.org/10.1016/j.gde.2009.04.002.

    Article  CAS  Google Scholar 

  37. Zhou JY, Ma WL, Liang S, Zeng Y, Shi R, Yu HL, Xiao WW, Zheng WL. Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells. BMB Rep. 2009;42:593–8. PMID: 19788861.

    Article  CAS  Google Scholar 

  38. Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta. 2011;1812:592–601. PMID: 21315819. https://doi.org/10.1016/j.bbadis.2011.02.002.

    Article  CAS  Google Scholar 

  39. Takwi A, Li Y. The p53 pathway encounters the MicroRNA world. Curr Genomics. 2009;10:194–7. PMID: 19881912. https://doi.org/10.2174/138920209788185270.

    Article  CAS  Google Scholar 

  40. Tao J, Zhao X, Tao J. C-MYC-miRNA circuitry: a central regulator of aggressive B-cell malignancies. Cell Cycle. 2014;13:191–8. PMID: 24394940. https://doi.org/10.4161/cc.27646.

    Article  CAS  Google Scholar 

  41. Alanazi I, Hoffmann P, Adelson DL. MicroRNAs are part of the regulatory network that controls EGF induced apoptosis, including elements of the JAK/STAT pathway, in A431 cells. PLoS One. 2015;10:e0120337. PMID: 25781916. https://doi.org/10.1371/journal.pone.0120337.

    Article  CAS  Google Scholar 

  42. Wang Y, Lee CG. MicroRNA and cancer--focus on apoptosis. J Cell Mol Med. 2009;13:12–23. PMID: 19175697. https://doi.org/10.1111/j.1582-4934.2008.00510.x.

    Article  CAS  Google Scholar 

  43. Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH. MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer. 2011;47:163–74. PMID: 21145728. https://doi.org/10.1016/j.ejca.2010.11.005.

    Article  CAS  Google Scholar 

  44. Kono H, Nakamura M, Ohtsuka T, Nagayoshi Y, Mori Y, Takahata S, Aishima S, Tanaka M. High expression of microRNA-155 is associated with the aggressive malignant behaviour of gallbladder carcinoma. Oncol Rep. 2013;30:17–24. PMID: 23660842. https://doi.org/10.3892/or.2013.2443.

    Article  Google Scholar 

  45. Park SY, Lee JH, Ha M, Nam JW, Kim VN. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol. 2009;16:23–9. PMID: 19079265. https://doi.org/10.1038/nsmb.1533.

    Article  CAS  Google Scholar 

  46. Subramanian S, Steer CJ. MicroRNAs as gatekeepers of apoptosis. J Cell Physiol. 2010;223:289–98. PMID: 20112282. https://doi.org/10.1002/jcp.22066.

    Article  CAS  Google Scholar 

  47. Cai J, Xu L, Cai Z, Wang J, Zhou B, Hu H. MicroRNA-146b-5p inhibits the growth of gallbladder carcinoma by targeting epidermal growth factor receptor. Mol Med Rep. 2015;12:1549–55. PMID: 25760482. https://doi.org/10.3892/mmr.2015.3461.

    Article  CAS  Google Scholar 

  48. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60. PMID: 15372072. https://doi.org/10.1038/sj.emboj.7600385.

    Article  CAS  Google Scholar 

  49. Xue Z, Wen J, Chu X, Xue X. A microRNA gene signature for identification of lung cancer. Surg Oncol. 2014;23:126–31. PMID: 25031224. https://doi.org/10.1016/j.suronc.2014.04.003.

    Article  Google Scholar 

  50. Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, Rossi S, Fernandez AF, Carneiro F, Oliveira C, Ferreira B, Liu CG, Villanueva A, Capella G, Schwartz S, Shiekhattar R, Esteller M. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009;41:365–70. PMID: 19219043. https://doi.org/10.1038/ng.317.

    Article  CAS  Google Scholar 

  51. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7. PMID: 17401365. https://doi.org/10.1038/ng2003.

    Article  CAS  Google Scholar 

  52. Zhang Z, Zhang B, Li W, Fu L, Fu L, Zhu Z, Dong JT. Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer. 2011;2:782–91. PMID: 22393463. https://doi.org/10.1177/1947601911429743.

    Article  CAS  Google Scholar 

  53. Zaravinos A. The regulatory role of MicroRNAs in EMT and cancer. J Oncol. 2015;2015:865816. PMID: 25883654. https://doi.org/10.1155/2015/865816.

    Article  Google Scholar 

  54. Rutnam ZJ, Wight TN, Yang BB. miRNAs regulate expression and function of extracellular matrix molecules. Matrix Biol. 2013;32:74–85. PMID: 23159731. https://doi.org/10.1016/j.matbio.2012.11.003.

    Article  CAS  Google Scholar 

  55. Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 2008;5:115–9. PMID: 19182522.

    Article  CAS  Google Scholar 

  56. Zhang J, Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 2012;31:653–62. PMID: 22684369. https://doi.org/10.1007/s10555-012-9368-6.

    Article  CAS  Google Scholar 

  57. Le XF, Merchant O, Bast RC, Calin GA. The roles of microRNAs in the cancer invasion-metastasis cascade. Cancer Microenviron. 2010;3:137–47. PMID: 21209780. https://doi.org/10.1007/s12307-010-0037-4.

    Article  CAS  Google Scholar 

  58. Letelier P, García P, Leal P, Álvarez H, Ili C, López J, Castillo J, Brebi P, Roa JC. miR-1 and miR-145 act as tumour suppressor microRNAs in gallbladder cancer. Int J Clin Exp Pathol. 2014;7:1849–67. PMID: 24966896.

    Google Scholar 

  59. Gallach S, Calabuig-Fariñas S, Jantus-Lewintre E, Camps C. MicroRNAs: promising new antiangiogenic targets in cancer. Biomed Res Int. 2014;2014:878450. PMID: 25197665. https://doi.org/10.1155/2014/878450.

    Article  CAS  Google Scholar 

  60. Weis SM, Cheresh DA. Tumour angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17:1359–70. PMID: 22064426. https://doi.org/10.1038/nm.2537.

    Article  CAS  Google Scholar 

  61. Lages E, Ipas H, Guttin A, Nesr H, Berger F, Issartel JP. MicroRNAs: molecular features and role in cancer. Front Biosci (Landmark Ed). 2012;17:2508–40. PMID: 22652795.

    Article  Google Scholar 

  62. Costa A, Afonso J, Osório C, Gomes AL, Caiado F, Valente J, Aguiar SI, Pinto F, Ramirez M, Dias S. miR-363-5p regulates endothelial cell properties and their communication with hematopoietic precursor cells. J Hematol Oncol. 2013;6:87. PMID: 24257019. https://doi.org/10.1186/1756-8722-6-87.

    Article  CAS  Google Scholar 

  63. Marcelo KL, Goldie LC, Hirschi KK. Regulation of endothelial cell differentiation and specification. Circ Res. 2013;112:1272–87. PMID: 23620236. https://doi.org/10.1161/CIRCRESAHA.113.300506.

    Article  CAS  Google Scholar 

  64. Su Z, Si W, Li L, Zhou B, Li X, Xu Y, Xu C, Jia H, Wang QK. MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development. Int J Biochem Cell Biol. 2014;49:53–63. PMID: 24448023. https://doi.org/10.1016/j.biocel.2014.01.005.

    Article  CAS  Google Scholar 

  65. Jamaluddin MS, Weakley SM, Zhang L, Kougias P, Lin PH, Yao Q, Chen C. miRNAs: roles and clinical applications in vascular disease. Expert Rev Mol Diagn. 2011;11:79–89. PMID: 21171923. https://doi.org/10.1586/erm.10.103.

    Article  CAS  Google Scholar 

  66. Heusschen R, van Gink M, Griffioen AW, Thijssen VL. MicroRNAs in the tumour endothelium: novel controls on the angioregulatory switchboard. Biochim Biophys Acta. 2010;1805:87–96. PMID: 19782719. https://doi.org/10.1016/j.bbcan.2009.09.005.

    Article  CAS  Google Scholar 

  67. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D. miR-126 regulates angiogenic signalling and vascular integrity. Dev Cell. 2008;15:272–84. PMID: 18694566. https://doi.org/10.1016/j.devcel.2008.07.008.

    Article  CAS  Google Scholar 

  68. Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X, Liang S. Roles of microRNA on cancer cell metabolism. J Transl Med. 2012;10:228. PMID: 23164426. https://doi.org/10.1186/1479-5876-10-228.

    Article  CAS  Google Scholar 

  69. Lynn FC. Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab. 2009;20:452–9. PMID: 19800254. https://doi.org/10.1016/j.tem.2009.05.007.

    Article  CAS  Google Scholar 

  70. Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, Phang JM. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A. 2012;109:8983–8. PMID: 22615405. https://doi.org/10.1073/pnas.1203244109.

    Article  Google Scholar 

  71. Shah MY, Calin GA. MicroRNAs as therapeutic targets in humane cancers. Wiley Interdiscip Rev RNA. 2014;5:537–48. PMID: 24687772. https://doi.org/10.1002/wrna.1229.

    Article  CAS  Google Scholar 

  72. Rothschild SI. microRNA therapies in cancer. Mol Cell Ther. 2014;2:7. PMID: 26056576. https://doi.org/10.1186/2052-8426-2-7.

    Article  Google Scholar 

  73. Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, Svoronos A, Braddock DT, Glazer PM, Engelman DM, Saltzman WM, Slack FJ. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature. 2015;518:107–10. PMID: 25409146. https://doi.org/10.1038/nature13905.

    Article  CAS  Google Scholar 

  74. Qiu Y, Luo X, Kan T, Zhang Y, Yu W, Wei Y, Shen N, Yi B, Jiang X. TGF-β upregulates miR-182 expression to promote gallbladder cancer metastasis by targeting CADM1. Mol Biosyst. 2014;10:679–85. PMID: 24445397. https://doi.org/10.1039/c3mb70479c.

    Article  CAS  Google Scholar 

  75. Peng HH, Zhang YD, Gong LS, Liu WD, Zhang Y. Increased expression of microRNA-335 predicts a favorable prognosis in primary gallbladder carcinoma. Onco Targets Ther. 2013;6:1625–30. PMID: 24250228. https://doi.org/10.2147/OTT.S53030.

    Article  CAS  Google Scholar 

  76. Zhou H, Guo W, Zhao Y, Wang Y, Zha R, Ding J, Liang L, Hu J, Shen H, Chen Z, Yin B, Ma B. MicroRNA-26a acts as a tumour suppressor inhibiting gallbladder cancer cell proliferation by directly targeting HMGA2. Int J Oncol. 2014;44:2050–8. PMID: 24682444. https://doi.org/10.3892/ijo.2014.2360.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A., Nizam, A., Singh, R. (2023). MicroRNA and Their Role in Carcinoma Gallbladder. In: Kumar Shukla, V., Pandey, M., Dixit, R. (eds) Gallbladder Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-19-6442-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6442-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6441-1

  • Online ISBN: 978-981-19-6442-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics