Skip to main content

Plant Phenolics: A Dynamic Compound Family Under Unfavorable Environment and Multiple Abiotic Stresses

  • Chapter
  • First Online:
Plant Phenolics in Abiotic Stress Management

Abstract

Expeditious progress in human population and extravagant usage of natural resources for human development give rise to unfavorable environment for agricultural practices. Additionally, extreme climatic events with combine or multiple abiotic stresses at their crucial growth stages cause massive loss in food production worldwide. To diminish the catastrophic loss, agriculture scientist engaged in the findings of new approaches and achieved some breakthrough in last decades. Among the main findings, application of plant growth regulators, osmoprotectants, and some inorganic and organic chemicals showed the excellent results. It is shown that, phenolic compounds (PCs) in plants have immense role in the growth and defense machineries of a plant and making it capable of withstanding multiple stressors. In summary, PCs have capacity to improve plant performance by synthesis of pigments, secondary metabolites, structural integrity, antioxidants, defense, biochemical, and molecular equilibrium under unfavorable conditions. As described earlier the problems, this analysis compile the impacts of environmental variables on PCs. As well as in this study, we investigate the in-depth role and tolerance mechanism by PCs under these circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcantara GA, Borges LL, Paula JR (2012) Seasonal variation in the content of phenolic compounds in barks of Myrcia rostrata DC. by influence of environmental factors. J Pharm Res 5:1306–1309

    Google Scholar 

  • Alegria C, Gonçalves EM, Moldão-Martins M, Cisneros-Zevallos L, Abreu M (2016) Peel removal improves quality without antioxidant loss, through wound-induced phenolic biosynthesis in shredded carrot. Postharvest Biol Technol 120:232–239

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Shahzad B, Ashraf U, Fahad S, Hassan W, Jan S, Khan I, Saleem MF, Bajwa AA (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23(12):11864–11875

    Article  CAS  Google Scholar 

  • Avena-Bustillos RJ, Du WX, Woods R, Olson D, Breksa AP III, McHugh TH (2012) Ultraviolet-B light treatment increases antioxidant capacity of carrot products. J Sci Food Agric 92(11):2341–2348

    Article  CAS  Google Scholar 

  • Balakumar T, Vincent VHB, Paliwal K (1993) On the interaction of UV-B radiation (280–315 nm) with water stress in crop plants. Physiol Plant 87(2):217–222

    Article  CAS  Google Scholar 

  • Bautista I, Boscaiu M, Lidón A, Llinares JV, Lull C, Donat MP, Mayoral O, Vicente O (2016) Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiol Plant 38(1):9

    Article  Google Scholar 

  • Borges LL, Alves SF, Sampaio BL, Conceição EC, Bara MTF (2013) Environmental factors affecting the concentration of phenolic compounds in Myrcia tomentosa leaves. Rev Bras Farmacogn 23:230–238

    Article  CAS  Google Scholar 

  • Chen S, Wang Q, Lu H, Li J, Yang D, Liu J, Yan C (2019a) Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia Obovata under Cd and Zn stress. Ecotoxicol Environ Saf 169:134–143

    Article  CAS  Google Scholar 

  • Chen Z, Ma Y, Yang R, Gu Z, Wang P (2019b) Effects of exogenous Ca2+ on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation. Food Chem 288:368–376

    Article  CAS  Google Scholar 

  • Chen S, Lin R, Lu H, Wang Q, Yang J, Liu J, Yan C (2020) Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in Kandelia obovata under cadmium and zinc stress. Chemosphere 29:126341

    Article  Google Scholar 

  • Connor AM, Finn CE, Alspach PA (2005) Genotypic and environmental variation in antioxidant activity and total phenolic content among blackberry and hybrid berry cultivars. J Am Soc Hortic Sci 130(4):527–533

    Article  CAS  Google Scholar 

  • Corso M, Perreau F, Mouille G, Lepiniec L (2020) Specialized phenolic compounds in seeds: structures, functions, and regulations. Plant Sci 296:110471

    Article  CAS  Google Scholar 

  • Daayf F, Lattanzio V (2009) Recent advances in polyphenol research. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Darmanti S, Santosa LH, Nugroho H, Dewi K (2018) Reactive oxygen species accumulations, phenylalanine ammonia-lyase activity and phenolic acid composition of soybean [Glycine max (l.) merr.] cv. grobogan that exposed to multiple stress of purple nutsedge (Cyperus rotundus l.) interference and drought. J Anim Plant Sci 28(1):244–251

    CAS  Google Scholar 

  • Dey P, Datta D, Pattnaik D, Dash D, Saha D, Panda D, Bhatta BB, Parida S, Mishra UN, Chauhan J, Pandey H (2022) Physiological, biochemical, and molecular adaptation mechanisms of photosynthesis and respiration under challenging environments. In: Plant perspectives to global climate changes. Academic Press, London, pp 79–100

    Chapter  Google Scholar 

  • Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z (2016) Enhanced carbon release under future climate conditions in a peatland mesocosm experiment: the role of phenolic compounds. Plant Soil 400(1–2):81–91

    Article  CAS  Google Scholar 

  • Formica-Oliveira AC, Martínez-Hernández GB, Díaz-López V, Artés F, Artés-Hernández F (2017) Effects of UV-B and UV-C combination on phenolic compounds biosynthesis in fresh-cut carrots. Postharvest Biol Technol 127:99–104

    Article  CAS  Google Scholar 

  • Gobbo-Neto L, Lopes NP (2007) Medicinal plants: factors of influence on the content of secondary metabolites. Química Nova 30(2):374–381

    Article  CAS  Google Scholar 

  • Godara OP, Kakralya BL, Kumar S, Kumar V, Singhal RK (2016) Influence of sowing time, varieties and salicylic acid application on different physiological parameters of Indian mustard (Brassica juncea L). J Pure Appl Microbiol 10(4):3063–3069

    Article  CAS  Google Scholar 

  • Goleniowski M, Bonfill M, Cusido R, Palazón J (2013) Phenolic acids. In: Natural products. Springer, Berlin, pp 1951–1973

    Chapter  Google Scholar 

  • Goufo P, Pereira J, Moutinho-Pereira J, Correia CM, Figueiredo N, Carranca C, Rosa EA, Trindade H (2014) Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environ Exp Bot 99:28–37

    Article  CAS  Google Scholar 

  • Grunewald W, De Smet I, Lewis DR, Löfke C, Jansen L, Goeminne G, Teichmann T (2012) Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci 109(5):1554–1559

    Article  CAS  Google Scholar 

  • Guidoni S, Ferrandino A, Novello V (2008) Effect of seasonal and agronomical practices on skin anthocyanin profile of Nebbiolo grapes. Am J Enol Vitic 59:22–29

    Article  CAS  Google Scholar 

  • Guillaumie S, Mzid R, Méchin V, Léon C, Hichri I, Destrac-Irvine A, Lauvergeat V (2010) The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol Biol 72(1–2):215

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Cicek N, Guneri E, Eraslan F, Guzelordu T (2005) Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.) (Einfluss einer Salicylsäure–Applikation auf die Induktion von Stresstoleranz sowie Nährstoffaufnahme von Mais [Zea mays L.]). Arch Agron Soil Sci 51(6):687–695

    Article  CAS  Google Scholar 

  • Handa N, Kohli SK, Sharma A, Thukral AK, Bhardwaj R, Abd Allah EF, Alqarawi AA, Ahmad P (2019) Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environ Exp Bot 161:180–192

    Article  CAS  Google Scholar 

  • Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M (2018) Climate change effects on secondary compounds of forest trees in the northern hemisphere. Front Plant Sci 9:1445

    Article  Google Scholar 

  • Hura T, Hura K, Grzesiak S (2008) Contents of total phenolics and ferulic acid, and PAL activity during water potential changes in leaves of maize single-cross hybrids of different drought tolerance. J Agron Crop Sci 194(2):104–112

    Article  CAS  Google Scholar 

  • Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY, Zhu YJ, Guo TC (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol Plant 57(4):718–724

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8(11):e26374

    Article  Google Scholar 

  • Khapugin AA, Senchugova MA (2018) The floristic lists as a source to characterize environment conditions of habitats using phytoindication methods: a case study for Iris aphylla (Iridaceae) and Lilium martagon (Liliaceae) in central Russia. Arnaldoa 25:75–86

    Article  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28

    Google Scholar 

  • Kristensen BK, Askerlund P, Bykova NV, Egsgaard H, Moller IM (2004) Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 65:1839–1851

    Article  CAS  Google Scholar 

  • Kumar S, Abedin M, Singh AK, Das S (2020a) Role of phenolic compounds in plant-defensive mechanisms. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 517–532

    Chapter  Google Scholar 

  • Kumar RKS, Kumar V, Kumar S, Choudhary BL (2017) High light stress response and tolerance mechanism in plant. Interdisciplinary J Contemporary Res 4:1–4

    CAS  Google Scholar 

  • Kumar M, Tak Y, Potkule J, Choyal P, Tomar M, Meena NL, Kaur C (2020b) Phenolics as plant protective companion against abiotic stress. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 277–308

    Chapter  Google Scholar 

  • Kumar N, Kumar V, Bose B, Singhal RK (2021a) Cadmium toxicity in plants and alleviation through seed priming approach. Plant Physiol Rep 26(4):647–660

    Article  CAS  Google Scholar 

  • Kumar V, Hidangmayum A, Singh A, Sodani R, Dadrwal BK, Kumar N, Chaudhary SK, Chaudhary BK, Kushwaha SP, Chauhan J, Anuragi H (2021b) Physiological, biochemical, and molecular mechanisms of gasotransmitter-mediated heavy metal stress tolerance in plants. In: Heavy metal toxicity in plants: physiological and molecular adaptations. Taylor & Francis Group, Milton, p 127

    Chapter  Google Scholar 

  • Kuras M, Stefanowska-Wronka M, Lynch JM, Zobel AM (1999) Cytochemical localization of phenolic compounds in columella cells of the root cap in seeds of Brassica napus changes in the localization of phenolic compounds during germination. Ann Bot 84(2):135–143

    Article  CAS  Google Scholar 

  • Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17

    Article  CAS  Google Scholar 

  • Lavola A, Nybakken L, Rousi M, Pusenius J, Petrelius M, Kellomäki S, Julkunen-Tiitto R (2013) Combination treatment of elevated UVB radiation, CO2 and temperature has little effect on silver birch (Betula pendula) growth and phytochemistry. Physiol Plant 149(4):499–514

    Article  CAS  Google Scholar 

  • Liley JB, McKenzie RL (2006) Where on Earth has the highest UV. UV radiation and its effects: an update, vol 68, pp 36–37

    Google Scholar 

  • Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19(2):335

    Article  Google Scholar 

  • López-Amorós ML, Hernández T, Estrella I (2006) Effect of germination on legume phenolic compounds and their antioxidant activity. J Food Compos Anal 19(4):277–283

    Article  Google Scholar 

  • López-Orenes A, Bueso MC, Conesa HM, Calderón AA, Ferrer MA (2017) Seasonal changes in antioxidative/oxidative profile of mining and non-mining populations of Syrian beancaper as determined by soil conditions. Sci Total Environ 575:437–447

    Article  Google Scholar 

  • Ma D, Sun D, Wang C, Li Y, Guo T (2014) Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol Biochem 80:60–66

    Article  CAS  Google Scholar 

  • Monteiro JM, Albuquerque UP, Lins Neto EM, Araújo EL, Albuquerque MM, Amorim EL (2006) The effects of seasonal climate changes in the Caatinga on tannin levels in Myracrodruon urundeuva (Engl.) Fr. All. and Anadenanthera colubrina (Vell.) Brenan. Rev Bras Farmacogn 16(3):338–344

    Article  CAS  Google Scholar 

  • Naikoo MI, Dar MI, Raghib F, Jaleel H, Ahmad B, Raina A, Khan FA, Naushin F (2019) Role and regulation of plants phenolics in abiotic stress tolerance: an overview. In: Plant signaling molecules. Elsevier, Amsterdam, pp 157–168

    Chapter  Google Scholar 

  • Ozturk K, Saglam A, Kadioglu A (2020) Heliotropium thermophilum, an extreme heat tolerant species, promises plants about adaptation to high soil temperature conditions. Physiol Mol Biol Plants 26:525–535

    Article  CAS  Google Scholar 

  • Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MB, Mohsin SM, Fujita M (2020) Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems. Plant Physiol Biochem 150:109–120

    Article  CAS  Google Scholar 

  • Peltonen PA, Vapaavuori E, Julkunen-tiitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Glob Chang Biol 11(8):1305–1324

    Article  Google Scholar 

  • Pérez-López U, Sgherri C, Miranda-Apodaca J, Micaelli F, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2018) Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2. Plant Physiol Biochem 123:233–241

    Article  Google Scholar 

  • Petridis A, Therios I, Samouris G, Tananaki C (2012) Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environ Exp Bot 79:37–43

    Article  CAS  Google Scholar 

  • Poonam RK, Bhardwaj R, Sirhindi G (2015) Castasterone regulated polyphenolic metabolism and photosynthetic system in Brassica juncea plants under copper stress. J Pharmacogn Phytochem 4:282–289

    CAS  Google Scholar 

  • Rajabbeigi E, Eichholz I, Beesk N, Ulrichs C, Kroh LW, Rohn S, Huyskens-Keil S (2013) Interaction of drought stress and UV-B radiation-impact on biomass production and flavonoid metabolism in lettuce (Lactuca sativa L.). J Appl Bot Food Qual 86(1). https://doi.org/10.5073/JABFQ.2013.086.026

  • Ravi S, Young T, Macinnis-Ng C, Nyugen TV, Duxbury M, Alfaro AC, Leuzinger S (2020) Untargeted metabolomics in halophytes: the role of different metabolites in New Zealand mangroves under multi-factorial abiotic stress conditions. Environ Exp Bot 173:103993

    Article  CAS  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2018) Differential responses of phenolic compounds of Brassica napus under drought stress. Iran J Plant Physiol 8:2417–2425

    Google Scholar 

  • Rezende WPD, Borges LL, Santos DLD, Alves NM, Paula JRD (2015) Effect of environmental factors on phenolic compounds in leaves of Syzygium jambos (L.) Alston (Myrtaceae). Mod Chem Appl 3:2

    Article  Google Scholar 

  • Rivero RM, Ruiz JM, Garcıa PC, Lopez-Lefebre LR, Sánchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160(2):315–321

    Article  CAS  Google Scholar 

  • Rodríguez-Calzada T, Qian M, Strid Å, Neugart S, Schreiner M, Torres-Pacheco I, Guevara-González RG (2019) Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiol Biochem 134:94–102

    Article  Google Scholar 

  • Sabagh AE, Hossain A, Islam MS, Iqbal MA, Raza A, Karademir Ç, Karademir E, Rehman A, Rahman MA, Singhal RK, Llanes A (2020) Elevated CO2 concentration improves heat-tolerant ability in crops. In: Abiotic stress in plants. IntechOpen, pp 1–17

    Google Scholar 

  • Sabagh AE, Hossain A, Islam MS, Iqbal MA, Amanet K, Mubeen M, Nasim W, Wasaya A, Llanes A, Ratnasekera D, Singhal RK (2021) Prospective role of plant growth regulators for tolerance to abiotic stresses. In: Plant growth regulators. Springer, Cham, pp 1–38

    Google Scholar 

  • Sgherri C, Scattino C, Pinzino C, Tonutti P, Ranieri AM (2015) Ultraviolet-B radiation applied to detached peach fruit: a study of free radical generation by EPR spin trapping. Plant Physiol Biochem 96:124–131

    Article  CAS  Google Scholar 

  • Sgherri C, Pérez-López U, Micaelli F, Miranda-Apodaca J, Mena-Petite A, Muñoz-Rueda A, Quartacci MF (2017) Elevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettuces. Plant Physiol Biochem 115:269–278

    Article  CAS  Google Scholar 

  • Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral AK, Bhardwaj R, Alam P, Ahmad P (2016) Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci 7:1569

    Article  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452

    Article  CAS  Google Scholar 

  • Silva FLB, Vieira LGE, Ribas AF, Moro AL, Neris DM, Pacheco AC (2018) Proline accumulation induces the production of total phenolics in transgenic tobacco plants under water deficit without increasing the G6PDH activity. Theor Exp Plant Physiol 30:251–260

    Article  CAS  Google Scholar 

  • Singh SK, Kakani VG, Surabhi GK, Reddy KR (2010) Cowpea (Vigna unguiculata [L.] Walp.) genotypes response to multiple abiotic stresses. J Photochem Photobiol B Biol 100(3):135–146

    Article  CAS  Google Scholar 

  • Singhal RK, Sodani R, Chauhan J, Sharma MK, Yashu BR (2017a) Physiological adaptation and tolerance mechanism of rice (Oryza sativa L.) in multiple abiotic stresses. Int J Pure Appl Biosci 5(3):459–466

    Article  Google Scholar 

  • Singhal RK, Kumar V, Kumar S, Choudhary BL (2017b) High light stress response and tolerance mechanism in plant. Interdiscip J Contemp Res 4(1):2–5

    Google Scholar 

  • Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Pandey S (2021) Crucial cell signaling compounds crosstalk and integrative multi-omics techniques for salinity stress tolerance in plants. Front Plant Sci 12:670369

    Article  Google Scholar 

  • Singhal RK, Kumar M, Bose B, Mondal S, Srivastava S, Dhankher OP, Tripathi RD (2022) Heavy metal (loid)s phytotoxicity in crops and its mitigation through seed priming technology. Int J Phytoremediation. https://doi.org/10.1080/15226514.2022.2068502

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  Google Scholar 

  • Szczalba M, Kaffkova K, Kalisz A, Kopta T, Pokluda R, Sekara A (2019) Combined effect of chilling and light stress on the metabolic profile of Origanum vulgare L. in the juvenile stage. Fresenius Environ Bull 28(5):3981–3990

    CAS  Google Scholar 

  • Tak Y, Kumar M (2020) Phenolics: a key defence secondary metabolite to counter biotic stress. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 309–329

    Chapter  Google Scholar 

  • Televičiūtė D, Tarasevičienė Ž, Danilčenko H, Barčauskaitė K, Kandaraitė M, Paulauskienė A (2020) Changes in chemical composition of germinated leguminous under abiotic stress conditions. Food Sci Technol. https://doi.org/10.1590/fst.23019

  • Tsimogiannis D, Oreopoulou V (2019) Classification of phenolic compounds in plants. In: Polyphenols in plants. Academic Press, London, pp 263–284

    Chapter  Google Scholar 

  • Tyagi K, Shukla P, Rohela GK, Shabnam AA, Gautam R (2020) Plant phenolics: their biosynthesis, regulation, evolutionary significance, and role in senescence. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 431–449

    Chapter  Google Scholar 

  • Varela MC, Arslan I, Reginato MA, Cenzano AM, Luna MV (2016) Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina). Plant Physiol Biochem 104:81–91

    Article  CAS  Google Scholar 

  • Verdaguer D, Jansen MA, Llorens L, Morales LO, Neugart S (2017) UV-A radiation effects on higher plants: exploring the known unknown. Plant Sci 255:72–81

    Article  CAS  Google Scholar 

  • Veteli TO, Kuokkanen K, Julkunen-Tiitto R, Roininen H, Tahvanainen J (2002) Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Glob Chang Biol 8:1240–1252

    Article  Google Scholar 

  • Viacava F, Santana-Gálvez J, Heredia-Olea E, Pérez-Carrillo E, Nair V, Cisneros-Zevallos L, Jacobo-Velázquez DA (2020) Sequential application of postharvest wounding stress and extrusion as an innovative tool to increase the concentration of free and bound phenolics in carrots. Food Chem 307:125551

    Article  CAS  Google Scholar 

  • Voipio I, Autio J (1994) Responses of red-leaved lettuce to light intensity, UV-A radiation and root zone temperature. Greenhouse Environ Control Autom 399:183–190

    Google Scholar 

  • Wagay NA, Lone R, Rafiq S, Bashir SU (2020) Phenolics: a game changer in the life cycle of plants. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 241–275

    Chapter  Google Scholar 

  • Wen PF, Chen JY, Wan SB, Kong WF, Zhang P, Wang W, Zhan JC, Pan QH, Huang WD (2008) Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regul 55(1):1–10

    Article  CAS  Google Scholar 

  • Wu F, Jiang W, Wu B (2013) Methodological aspects about determination of plant defensive phenolics in response to stress. Curr Anal Chem 9(3):360–367

    Article  CAS  Google Scholar 

  • Xu Y, Charles MT, Luo Z, Mimee B, Veronneau PY, Rolland D, Roussel D (2017) Preharvest ultraviolet C irradiation increased the level of polyphenol accumulation and flavonoid pathway gene expression in strawberry fruit. J Agric Food Chem 65:9970–9979

    Article  CAS  Google Scholar 

  • Xu M, Rao J, Chen B (2020) Phenolic compounds in germinated cereal and pulse seeds: classification, transformation, and metabolic process. Crit Rev Food Sci Nutr 60(5):740–759

    Article  CAS  Google Scholar 

  • Yan J, Wang B, Jiang Y, Cheng L, Wu T (2014) GmFNSII-controlled soybean flavone metabolism responds to abiotic stresses and regulates plant salt tolerance. Plant Cell Physiol 55:74–86

    Article  CAS  Google Scholar 

  • Zaprometov MN (1992) On the functional role of phenolic compounds in plants. Fiziologiya rastenij (Russian Federation)

    Google Scholar 

  • Zhang XX, Shi QQ, Ji D, Niu LX, Zhang YL (2017) Determination of the phenolic content, profile, and antioxidant activity of seeds from nine tree peony (Paeonia section Moutan DC.) species native to China. Food Res Int 97:141–148

    Article  CAS  Google Scholar 

  • Živkovi CU, Miljkovi CD, Bariši C, Klisari CN, Tarasjev A, Avramov S (2015) Performance of Iris variegata genotypes in different light conditions: flowering phenology and reproductive output. Genetika 47:679–694

    Article  Google Scholar 

  • Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysis. Glob Chang Biol 12(1):27–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, J. et al. (2023). Plant Phenolics: A Dynamic Compound Family Under Unfavorable Environment and Multiple Abiotic Stresses. In: Lone, R., Khan, S., Mohammed Al-Sadi, A. (eds) Plant Phenolics in Abiotic Stress Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-6426-8_6

Download citation

Publish with us

Policies and ethics