Skip to main content

High-Pressure and High-Temperature Experiments with Large-Volume Apparatus

  • Chapter
  • First Online:
High-Pressure Silicates and Oxides

Part of the book series: Advances in Geological Science ((AGS))

  • 454 Accesses

Abstract

Large-volume high-pressure apparatus, particularly the piston-cylinder apparatus and multianvil presses, are described in this chapter. In Earth science, accurate determination and precise control of pressure and temperature in high-pressure and high-temperature experiments are crucial for applying the experimental results to the Earth’s interior. In materials science, a large sample volume is needed to synthesize new materials in large quantities for measurements of various physical and chemical properties. Experimental techniques for generation of high pressure and high temperature, accurate pressure determination and temperature measurement, etc., are discussed for quenching experiments and in situ synchrotron X-ray diffraction experiments that involve large-volume apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akahama Y, Kobayashi M, Kawamura H, Endo S (1993) Sintered diamond anvil high-pressure cell for electrical resistance measurements at low temperatures up to 50 GPa. Rev Sci Instr 64:1979–1983

    Article  Google Scholar 

  • Akaogi M, Kusaba K, Susaki J, Yagi T, Matsui M, Kikegawa T, Yusa H, Ito E (1992) High pressure high temperature stability of αPbO2-type TiO2 and MgSiO3 majorite: calorimetric and in situ x ray diffraction studies. In: Syono Y, Manghnani MH (eds) High pressure research: application to earth and planetary sciences. Am Geophys Union Geophys Monogr 67:447–455

    Google Scholar 

  • Akaogi M, Abe K, Yusa H, Ishii T, Tajima T, Kojitani H, Mori D, Inaguma Y (2017) High-pressure high-temperature phase relations in FeTiO3 up to 35 GPa and 1600 °C. Phys Chem Minerals 44:63–73. https://doi.org/10.1007/s00269-016-0836-3

    Article  Google Scholar 

  • Akimoto S, Yagi T, Inoue K (1977) High temperature-pressure phase boundaries in silicate systems using in situ x-ray diffraction. In: Manghnani MH, Akimoto S (eds) High-pressure research: applications in geophysics. Press, Acad, pp 585–602

    Chapter  Google Scholar 

  • Anderson OL, Isaak DG, Yamamoto S (1989) Anharmonicity and the equation of state for gold. J Appl Phys 65:1534–1543

    Article  Google Scholar 

  • Barnett JD, Hall HT (1964) High pressure-high temperature, X-ray diffraction apparatus. Rev Sci Instr 35:175–182

    Article  Google Scholar 

  • Bean VE, Akimoto S, Bell PM, Block S, Holzapfel WB, Manghnani MH, Nicol MF, Stishov SM (1986) Another step toward an international practical pressure scale: 2nd AIRAPT IPPS task group report. Physica 139:52–54

    Google Scholar 

  • Block S (1978) Round-robin study of the pressure phase transition in ZnS. Acta Cryst A34(Suppl):316

    Google Scholar 

  • Bose K, Ganguly J (1995) Quartz-coesite transition revisited: Reversed experimental determination at 500–1200 °C and retrieved thermochemical properties. Am Mineral 80:231–238

    Article  Google Scholar 

  • Boyd FR, England JL (1960) Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750 °C. J Geophys Res 65:741–748

    Article  Google Scholar 

  • Brown JM (1999) The NaCl pressure standard. J Appl Phys 86:5801–5808

    Article  Google Scholar 

  • Decker DL (1971) High-pressure equation of state for NaCl, KCl, and CsCl. J Appl Phys 42:3239–3244

    Article  Google Scholar 

  • Dorogokupets PI, Dewaele A (2007) Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: internally consistent high-temperature pressure scales. High Press. Res. 27:431–446

    Article  Google Scholar 

  • Dunn KJ, Bundy FP (1978) Materials and techniques for pressure calibration by resistance-jump transitions up to 500 kilobars. Rev Sci Instr 49:365–370

    Article  Google Scholar 

  • Fei Y, Bertka CM (1999) Phase transitions in the Earth's mantle and mantle mineralogy. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis (Joe) Boyd. Geochem Soc Spec Publ 6:189–207

    Google Scholar 

  • Fei Y, Li J, Hirose K, Minarik W, Van Orman J, Sanloup C, van Westrenen W, Komabayashi T, Funakoshi K (2004a) A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements. Phys Earth Planet Inter 143–144:515–526. https://doi.org/10.1016/j.pepi.2003.09.018

    Article  Google Scholar 

  • Fei Y, Van Orman J, Li J, van Westrenen W, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M, Funakoshi K (2004b) Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res 109:B02305. https://doi.org/10.1029/2003JB002562

    Article  Google Scholar 

  • Gasparik T (1989) Transformation of enstatite—diopside—jadeite pyroxenes to garnet. Contrib Mineral Petrol 102:389–405

    Article  Google Scholar 

  • Getting IC, Kennedy GC (1970) Effect of pressure on the emf of chromel-alumel and platinum-platinum 10% rhodium thermocouples. J Appl Phys 41:4552–4562

    Article  Google Scholar 

  • Hirose K (2002) Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J Geophys Res 107. https://doi.org/10.1029/2001JB000597

  • Inaguma Y (2017) High-pressure perovskite: synthesis, structure, and phase relation. In: Dronskowski R, Kikkawa S, Stein A (eds) Handbook of solid state chemistry, vol 14. Wiley, pp 49–106

    Google Scholar 

  • Inoue K, Asada T (1973) Cubic anvil X-ray diffraction press up to 100 kbar and 1000 °C. Jpn J Appl Phys 12:1786–1793

    Article  Google Scholar 

  • Inoue T, Irifune T, Higo Y, Sanehira T, Sueda Y, Yamada A, Shinmei T, Yamazaki D, Ando J, Funakoshi K, Utsumi W (2006) The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 determined by in situ X-ray diffraction. Phys Chem Minerals 33:106–114. https://doi.org/10.1007/s00269-005-0053-y

    Article  Google Scholar 

  • Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H (2003) Ultrahard polycrystalline diamond from graphite. Nature 421:599–600

    Article  Google Scholar 

  • Irifune T, Isobe F, Shinmei T (2014) A novel large-volume Kawai-type apparatus and its application to the synthesis of sintered bodies of nano-polycrystalline diamond. Phys Earth Planet Inter 228:255–261. https://doi.org/10.1016/j.pepi.2013.09.007

    Article  Google Scholar 

  • Irifune T, Kunimoto T, Shinmei T, Tange Y (2019) High pressure generation in Kawai-type multianvil apparatus using nano-polycrystalline diamond anvils. CR Geosci 351:260–268. https://doi.org/10.1016/j.crte.2018.07.005

    Article  Google Scholar 

  • Ishii T, Kojitani H, Akaogi M (2011) Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite-perovskite transition in MgSiO3: Precise comparison by high-pressure high-temperature experiments with multi-sample cell technique, Earth Planet. Sci Lett 309:185–197. https://doi.org/10.1016/j.epsl.2011.06.023

    Article  Google Scholar 

  • Ishii T, Kojitani H, Akaogi M (2012) High-pressure phase transitions and subduction behavior of continental crust at pressure-temperature conditions up to the upper part of the lower mantle. Earth Planet Sci Lett 357–358:31–41. https://doi.org/10.1016/j.epsl.2012.09.019

    Article  Google Scholar 

  • Ishii T, Kojitani H, Akaogi M (2019a) Phase relations of harzburgite and MORB up to the uppermost lower mantle conditions: Precise comparison with pyrolite by multi-sample cell high-pressure experiments with implication to dynamics of subducted slabs. J Geophys Res 124:3491–3507. https://doi.org/10.1029/2018JB016749

    Article  Google Scholar 

  • Ishii T, Liu Z, Katsura T (2019b) A breakthrough in pressure generation by a Kawai-type multi-anvil. Engineering 5:434–440. https://doi.org/10.1016/j.eng.2019.01.013

    Article  Google Scholar 

  • Ishii T, Kojitani H, Tsukamoto S, Fujino K, Mori D, Inaguma Y, Tsujino N, Yoshino T, Yamazaki D, Higo Y, Funakoshi K, Akaogi M (2014) High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. Am Mineral 99:1788–1797. https://doi.org/10.2138/am.2014.4736

    Article  Google Scholar 

  • Ishii T, Shi L, Huang R, Tsujino N, Druzhbin D, Myhill R, Li Y, Wang L, Yamamoto T, Miyajima N, Kawazoe T, Nishiyama N, Higo Y, Tange Y, Katsura T (2016) Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils. Rev Sci Instr 87:024501. https://doi.org/10.1063/1.4941716

    Article  Google Scholar 

  • Ishii T, Yamazaki D, Tsujino N, Xu F, Liu Z, Kawazoe T, Yamamoto T, Druzhbin D, Wang L, Higo Y, Tange Y, Yoshino T, Katsura T (2017) Pressure generation to 65 GPa in a Kawai-type multi-anvil apparatus with tungsten carbide anvils. High Press Res 37:507–515. https://doi.org/10.1080/08957959.2017.1375491

    Article  Google Scholar 

  • Ito E (2015) Multi-anvil cells and high pressure experimental methods. In: Price GD, Stixrude L (eds) Mineral physics, treatise on geophysics, vol 2, 2nd edn. Elsevier, pp 233–261

    Chapter  Google Scholar 

  • Ito E, Takahashi E (1989) Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J Geophys Res 94:10637–10646

    Article  Google Scholar 

  • Ito E, Katsura T, Yamazaki D, Yoneda A, Tado M, Ochi T, Nishibara E, Nakamura A (2009) A new 6-axis apparatus to squeeze the Kawai-cell of sintered diamond cubes. Phys Earth Planet Inter 174:264–269. https://doi.org/10.1016/j.pepi.2008.11.007

    Article  Google Scholar 

  • Ito E, Yamazaki D, Yoshino T, Fukui H, Zhai S, Shatzkiy A, Katsura T, Tange Y, Funakoshi K (2010) Pressure generation and investigation of the post-perovskite transformation in MgGeO3 by squeezing the Kawai-cell equipped with sintered diamond anvils. Earth Planet Sci Lett 293:84–89. https://doi.org/10.1016/j.epsl.2010.02.023

    Article  Google Scholar 

  • Ito E, Yamazaki D, Yoshino T, Shan S, Guo X, Tsujino N, Kunimoto T, Higo Y, Funakoshi K (2014) High pressure study of transition metal monooxides MnO and CoO: structure and electrical resistance. Phys Earth Planet Inter 228:170–175. https://doi.org/10.1016/j.pepi.2013.12.009

    Article  Google Scholar 

  • Jamieson JC, Fritz JN, Manghnani MH (1982) Pressure measurement at high temperature in X-ray diffraction studies: gold as a primary standard. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics. Center Academy Publlications Japan, Tokyo, pp 27–48

    Chapter  Google Scholar 

  • Johannes W, Bell PM, Mao HK, Boettcher AL, Chipman DW, Hays JF, Newton RC, Seifert F (1971) An interlaboratory comparison of piston-cylinder pressure calibration using the albite-breakdown reaction. Contrib Mineral Petrol 32:24–38

    Article  Google Scholar 

  • Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter MJ, Ito E (2004) Olivine-wadsleyite transition in the system Mg2SiO4-Fe2SiO4. J Geophys Res 109:B02209. https://doi.org/10.1029/2003JB002438

    Article  Google Scholar 

  • Kawai N, Endo S (1970) The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Rev Sci Instr 41:1178–1181

    Article  Google Scholar 

  • Keppler H, Frost DJ (2005) Introduction to minerals under extreme conditions. In: Miletich R (ed) Mineral behaviour at extreme conditions, the EMU notes in mineralogy, vol 7. Eötvös Univ. Press, Budapest, pp 1–30

    Google Scholar 

  • Kondo T, Sawamoto H, Yoneda A, Kato M, Matsumuro A, Yagi T, Kikegawa T (1993) The use of sintered diamond anvils in the MA8 type high-pressure apparatus. PAGEOPH 141:601–611

    Article  Google Scholar 

  • Kono Y, Irifune T, Higo Y, Inoue T, Barnhoorn A (2010) P-V–T relation of MgO derived by simultaneous elastic wave velocity and in situ X-ray measurements: a new pressure scale for the mantle transition region. Phys Earth Planet Inter 183:196–211. https://doi.org/10.1016/j.pepi.2010.03.010

    Article  Google Scholar 

  • Kubo A, Akaogi M (2000) Post-garnet transitions in the system Mg4Si4O12-Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Phys Earth Planet Interiors 121:85–102

    Article  Google Scholar 

  • Kunimoto T, Irifune T, Tange Y, Wada K (2016) Pressure generation to 50 GPa in Kawai-type multianvil apparatus using newly developed tungsten carbide anvils. High Press Res 36:97–104. https://doi.org/10.1080/08957959.2016.1148149

    Article  Google Scholar 

  • Leinenweber KD, Tyburczy JA, Sharp TG, Soignard E, Diedrich T, Petuskey WB, Wang Y, Mosenfelder JL (2012) Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). Am Mineral. https://doi.org/10.2138/am.2012.3844

    Article  Google Scholar 

  • Li J, Hadidiacos C, Mao HK, Fei Y, Hemley RJ (2003) Behavior of thermocouples under high pressure in a multi-anvil apparatus. High Press Res 23:389–401

    Article  Google Scholar 

  • Liu Z, Irifune T, Nishi M, Tange Y, Arimoto T, Shinmei T (2016) Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Phys Earth Planet Inter 257:18–27. https://doi.org/10.1016/j.pepi.2016.05.006

    Article  Google Scholar 

  • Matsui M, Parker SC, Leslie M (2000) The MD simulation of the equation of state of MgO: application as a pressure calibration standard at high temperature and high pressure. Am Mineral 85:312–316

    Article  Google Scholar 

  • Mirwald PW, Getting IC, Kennedy GC (1975) Low-friction cell for piston-cylinder high-pressure apparatus. J Geophys Res 80:1519–1525

    Article  Google Scholar 

  • Morishima H, Kato T, Suto M, Ohtani E, Urakawa S, Utsumi W, Shimomura O, Kikegawa T (1994) The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science 265:1202–1203

    Article  Google Scholar 

  • Nishihara Y, Doi S, Kakizawa S, Higo Y, Tange Y (2020) Effect of pressure on temperature measurements using WRe thermocouple and its geophysical impact. Phys Earth Planet Inter 298:106348. https://doi.org/10.1016/j.pepi.2019.106348

    Article  Google Scholar 

  • Ohtani E, Kagawa N, Shimomura O, Togaya M, Suito K, Onodera A, Sawamoto H, Yoneda M, Tanaka S, Utsumi W, Ito E, Matsumuro A, Kikegawa T (1989) High-pressure generation by a multiple anvil system with sintered diamond anvils. Rev Sci Instr 60:922–925

    Article  Google Scholar 

  • Ono S, Kikegawa T, Higo Y (2011) In situ observation of a garnet/perovskite transition in CaGeO3. Phys Chem Minerals 38:735–740. https://doi.org/10.1007/s00269-011-0446-z

    Article  Google Scholar 

  • Ono S, Kikegawa T, Higo Y (2013) In situ observation of a phase transition in Fe2SiO4 at high pressure and high temperature. Phys Chem Minerals 40:811–816. https://doi.org/10.1007/s00269-013-0615-3

    Article  Google Scholar 

  • Ono S, Kikegawa T, Higo Y, Tange Y (2017) Precise determination of the phase boundary between coesite and stishovite in SiO2. Phys Earth Planet Inter 264:1–6. https://doi.org/10.1016/j.pepi.2017.01.003

    Article  Google Scholar 

  • Osugi J, Shimizu K, Inoue K, Yasunami K (1964) A compact cubic anvil high pressure apparatus. Rev Phys Chem Japan 34:1–6

    Google Scholar 

  • Piermarini GJ, Block S (1975) Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale. Rev Sci Instr 46:973–979

    Article  Google Scholar 

  • Shatskiy A, Yamazaki D, Morard G, Cooray T, Matsuzaki T, Higo Y, Funakoshi K, Sumiya H, Ito E, Katsura T (2009) Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments. Rev Sci Instr 80:023907. https://doi.org/10.1063/1.3084209

    Article  Google Scholar 

  • Shim S, Duffy TS, Takemura K (2002) Equation of state of gold and its application to the phase boundaries near 660 km depth in the Earth’s mantle. Earth Planet Sci Lett 203:729–739

    Article  Google Scholar 

  • Shimomura O, Yamaoka S, Yagi T, Wakatsuki M, Tsuji K, Kawamura H, Hamaya N, Fukunaga O, Aoki K, Akimoto S (1985) Multi-anvil type X-ray system for synchrotron radiation. In: Minomura S (ed) Solid state physics under pressure. Terra Science Publications, Tokyo, pp 351–356

    Google Scholar 

  • Speziale S, Zha C-S, Duffy TS, Hemley RJ, Mao HK (2001) Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure-volume-temperature equation of state. J Geophys Res 106:515–528

    Article  Google Scholar 

  • Susaki J, Akaogi M, Akimoto S, Shimomura O (1985) Garnet-perovskite transformation in CaGeO3: in situ x-ray measurements using synchrotron radiation. Geophys Res Lett 12:729–732

    Article  Google Scholar 

  • Suzuki T, Yagi T, Akimoto S (1981) Precise measurements of phase transition pressure of GaAs. Abst. In: 22nd High pressure conference Japan, pp 8–9

    Google Scholar 

  • Suzuki A, Ohtani E, Morishima H, Kubo T, Kanbe Y, Kondo T, Okada T, Terasaki H, Kato T, Kikegawa T (2000) In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophys Res Lett 27:803–806

    Article  Google Scholar 

  • Takahashi E, Yamada H, Ito E (1982) An ultrahigh pressure furnace assembly to 100 kbar and 1500 °C with minimum temperature uncertainty. Geophys Res Lett 9:805–807

    Article  Google Scholar 

  • Tange Y, Irifune T, Funakoshi K (2008) Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils, High Press. Res 28:245–254

    Google Scholar 

  • Tange Y, Nishihara Y, Tsuchiya T (2009) Unified analyses for P-V-T equation of state of MgO: a solution for pressure-scale problems in high P-T experiments. J. Geophy Res 114:B03208. https://doi.org/10.1029/2008JB005813

    Article  Google Scholar 

  • Tange Y, Takahashi E, Funakoshi K (2011) In situ observation of pressure-induced electrical resistance changes in zirconium: pressure calibration points for the large volume press at 8 and 35 GPa. High Press Res 31:413–418. https://doi.org/10.1080/08957959.2011.596837

    Article  Google Scholar 

  • Tsuchiya T (2003) First-principles prediction of the P-V-T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res 108:2462. https://doi.org/10.1029/2003JB002446

    Article  Google Scholar 

  • Walter MJ, Thibault Y, Wei K, Luth RW (1995) Characterizing experimental pressure and temperature conditions in multi-anvil apparatus. Can J Phys 73:273–286

    Article  Google Scholar 

  • Withers AC, Essene EJ, Zhang Y (2003) Rutile/TiO2II phase equilibria. Contrib Mineral Petrol 145:199–204

    Article  Google Scholar 

  • Xie L, Yoneda A, Yoshino T, Yamazaki D, Tsujino N, Higo Y, Tange Y, Irifune T, Shimei T, Ito E (2017) Synthesis of boron-doped diamond and its application as a heating material in a multianvil high-pressure apparatus. Rev Sci Instr 88:093904. https://doi.org/10.1063/1.4993959

    Article  Google Scholar 

  • Yagi T, Akimoto S (1976) Direct determination of coesite-stishovite transition by in-situ X-ray measurements. Tectonophys 35:259–270

    Article  Google Scholar 

  • Yagi T, Akaogi M, Shimomura O, Suzuki T, Akimoto S (1987) In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation. J Geophys Res 92:6207–6213

    Article  Google Scholar 

  • Yamazaki D, Ito E, Yoshino T, Tsujino N, Yoneda A, Guo X, Xu F, Higo Y, Funakoshi K (2014) Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Phys Earth Planet Inter 228:262–267. https://doi.org/10.1016/j.pepi.2014.01.013

    Article  Google Scholar 

  • Yamazaki D, Ito E, Yoshino T, Tsujino N, Yoneda A, Gomi H, Vazhakuttiyakam J, Sakurai M, Zhang Y, Higo Y, Tange Y (2019) High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg, Fe)SiO3. CR Geosci 351:253–259. https://doi.org/10.1016/j.crte.2018.07.004

    Article  Google Scholar 

  • Zha C-S, Mao H-K, Hemley RJ (2000) Elasticity of MgO and a primary pressure scale to 55 GPa. Proc Natl Acad Sci 97:13494–13499

    Article  Google Scholar 

  • Zhang J, Li B, Utsumi W, Liebermann RC (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys Chem Minerals 23:1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Akaogi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akaogi, M. (2022). High-Pressure and High-Temperature Experiments with Large-Volume Apparatus. In: High-Pressure Silicates and Oxides. Advances in Geological Science. Springer, Singapore. https://doi.org/10.1007/978-981-19-6363-6_3

Download citation

Publish with us

Policies and ethics