Skip to main content

High-Pressure Minerals from the Earth’s Mantle and in Shocked Meteorites

  • Chapter
  • First Online:
High-Pressure Silicates and Oxides

Part of the book series: Advances in Geological Science ((AGS))

  • 463 Accesses

Abstract

High-pressure silicates and oxides have been found in nature as mineral inclusions in diamonds derived from the Earth’s mantle and as minerals in shocked meteorites and impacted terrestrial rocks. These natural high-pressure minerals are discussed in this chapter. High-pressure and high-temperature phase relations determined experimentally and by thermodynamic calculation can be used to evaluate pressure and temperature environments where the mantle-derived high-pressure minerals were formed. The determined phase relations can also be used for constraining the P and T conditions that the shocked minerals experienced during the shock event for the analysis of the impact processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaogi M (2000) Clues from a shocked meteorite. Science 287:1602–1603

    Article  Google Scholar 

  • Akaogi M, Akimoto S (1977) Pyroxene-garnet solid solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 15:90–106

    Article  Google Scholar 

  • Akaogi M, Akimoto S (1979) High-pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+-Fe2+ partitioning among constituent minerals. Phys Earth Planet Inter 19:31–51

    Article  Google Scholar 

  • Akaogi M, Hamada Y, Suzuki T, Kobayashi M, Okada M (1999) High pressure transitions in the system MgAl2O4-CaAl2O4: a new hexagonal aluminous phase with implication for the lower mantle. Phys Earth Planet Inter 115:67–77

    Article  Google Scholar 

  • Akaogi M, Yano M, Tejima Y, Iijima M, Kojitani H (2004a) High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5-CaTiSiO5 system. Phys Earth Planet Inter 143–144:145–156. https://doi.org/10.1016/j.pepi.2003.08.008

    Article  Google Scholar 

  • Akaogi M, Kamii N, Kishi A, Kojitani H (2004b) Calorimetric study on high-pressure transitions in KAlSi3O8. Phys Chem Mineral 31:85–91. https://doi.org/10.1007/s00269-003-0372-9

    Article  Google Scholar 

  • Akaogi M, Haraguchi M, Yaguchi M, Kojitani H (2009) High-pressure phase relations and thermodynamic properties of CaAl4Si2O11 CAS phase. Phys Earth Planet Inter 173:1–6. https://doi.org/10.1016/j.pepi.2008.10.010

    Article  Google Scholar 

  • Akaogi M, Haraguchi M, Nakanishi K, Ajiro H, Kojitani H (2010) High-pressure phase relations in the system CaAl4Si2O11-NaAl3Si3O11 with implication for Na-rich CAS phase in shocked Martian meteorites. Earth Planet Sci Lett 289:503–508. https://doi.org/10.1016/j.epsl.2009.11.043

    Article  Google Scholar 

  • Akaogi M, Kawahara A, Kojitani H, Yoshida K, Anegawa Y, Ishii T (2018) High-pressure phase transitions in MgCr2O4⋅Mg2SiO4 composition: reactions between olivine and chromite with implications for ultrahigh-pressure chromitites. Am Mineral 103:161–170. https://doi.org/10.2138/am-2018-6135

    Article  Google Scholar 

  • Anzolini C, Angel RJ, Merlini M, Derzsi M, Tokár K, Milani S, Krebs MY, Brenker FE, Nestola F, Harris JW (2016) Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos 265:138–147. https://doi.org/10.1016/j.lithos.2016.09.025

    Article  Google Scholar 

  • Arai S (2013) Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: a good inference. Earth Planet Sci Lett 379:81–87. https://doi.org/10.1016/j.epsl.2013.08.006

    Article  Google Scholar 

  • Arai S, Miura M (2016) Formation and modification of chromitites in the mantle. Lithos 264:277–295. https://doi.org/10.1016/j.lithos.2016.08.039

    Article  Google Scholar 

  • Beck P, Gillet P, Gautron L, Daniel I, El Goresy A (2004) A new natural high-pressure (Na, Ca)-hexaluminosilicate [(CaxNa1-x)Al3+xSi3-xO11] in shocked Martian meteorites. Earth Planet Sci Lett 219:1–12

    Article  Google Scholar 

  • Beyer C, Frost DJ (2017) The depth of sub-lithospheric diamond formation and the redistribution of carbon in the deep mantle. Earth Planet Sci Lett 461:30–39. https://doi.org/10.1016/j.epsl.2016.12.017

    Article  Google Scholar 

  • Bindi L, Chen M, Xie X (2017) Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite. Sci Rep 7:42674. https://doi.org/10.1038/srep42674

    Article  Google Scholar 

  • Bindi L, Shim S-H, Sharp TG, Xie X (2020) Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite. Sci Adv 6, eaay7893. https://doi.org/10.1126/sciadv.aay7893

  • Binns RA, Davis RJ, Reed SJB (1969) Ringwoodite, natural (Mg, Fe)2SiO4 spinel in the Tenham meteorite. Nature 221:943–944

    Article  Google Scholar 

  • Bobrov AV, Kojitani H, Akaogi M, Litvin YA (2008) Phase relations on the diopside-jadeite-hedenbergite join up to 24 GPa and stability of Na-bearing majoritic garnet. Geochim Cosmochim Acta 72:2392–2408. https://doi.org/10.1016/j.gca.2008.03.003

    Article  Google Scholar 

  • Brenker FE, Nestola F, Brenker L, Peruzzo L, Harris JW (2021) Origin, properties, and structure of breyite: the second most abundant mineral inclusion in super-deep diamonds. Am Mineral 106:38–43. https://doi.org/10.2138/am-2020-7513

    Article  Google Scholar 

  • Chao ECT, Shoemaker EM, Madsen BM (1960) First natural occurrence of coesite. Science 132:220–222

    Article  Google Scholar 

  • Chao ECT, Fahey JJ, Littler J, Milton DJ (1962) Stishovite, SiO2, a very high pressure new mineral from meteor crater Arizona. J Geophys Res 67:419–421

    Article  Google Scholar 

  • Chen M, Shu J, Mao HK, Xie X, Hemley RJ (2003a) Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proc Nat Acad Sci 100:14651–14654

    Article  Google Scholar 

  • Chen M, Shu J, Xie X, Mao HK (2003b) Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochim Cosmochim Acta 67:3937–3942

    Article  Google Scholar 

  • Chen M, Shu J, Mao HK (2008) Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Sci Bull 53:3341–3345

    Article  Google Scholar 

  • Collerson KD, Williams Q, Kamber BS, Omori S, Arai H, Ohtani E (2010) Majoritic garnet: a new approach to pressure estimation of shock events in meteorites and the encapsulation of sub-lithospheric inclusions in diamond. Geochim Cosmochim Acta 74:5939–5957. https://doi.org/10.1016/j.gca.2010.07.005

    Article  Google Scholar 

  • Day HW (2012) A revised diamond-graphite transition curve. Am Mineral 97:52–62. https://doi.org/10.2138/am.2011.3763

    Article  Google Scholar 

  • Dera P, Prewitt CT, Boctor NZ, Hemley RJ (2002) Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty. Am Mineral 87:1018–1023

    Article  Google Scholar 

  • El Goresy A, Chen M, Gillet P, Dubrovinsky L, Graup G, Ahuja R (2001a) A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries Crater in Germany. Earth Planet Sci Lett 192:485–495

    Article  Google Scholar 

  • El Goresy A, Chen M, Dubrovinsky L, Gillet P, Graup G (2001b) An ultradense polymorph of rutile with seven-coordinated titanium from the Ries Crater. Science 293:1467–1470

    Article  Google Scholar 

  • El Goresy A, Dubrovinsky L, Gillet P, Graup G, Chen M (2010) Akaogiite: an ultra-dense polymorph of TiO2 with the baddeleyite-type structure, in shocked garnet gneiss from the Ries Crater Germany. Am Mineral 95:892–895. https://doi.org/10.2138/am.2010.3425

    Article  Google Scholar 

  • El Goresy A, Dera P, Sharp TG, Prewitt CT, Chen M, Dubrovinsky L, Wopenka B, Boctor NZ, Hemley RJ (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur J Mineral 20:523–528. https://doi.org/10.1127/0935-1221/2008/0020-1812

    Article  Google Scholar 

  • Essene E (1974) High-pressure transformations in CaSiO3. Contrib Mineral Petrol 45:247–250

    Article  Google Scholar 

  • Gautron L, Angel RJ, Miletich R (1999) Structural characterization of the high-pressure phase CaAl4Si2O11. Phys Chem Mineral 27:47–51

    Article  Google Scholar 

  • German VN, Podurets MA, Trunin RF (1973) Shock compression of quartz to 90 GPa. J Exp Theor Phys 37:107–115

    Google Scholar 

  • Gillet P, El Goresy A (2013) Shock events in the solar system: The message from minerals in terrestrial planets and asteroids. Ann Rev Earth Planet 41:257–285. https://doi.org/10.1146/annurev-earth-042711-105538

    Article  Google Scholar 

  • Gillet P, Chen M, Dubrovinsky L, El Goresy A (2000) Natural NaAlSi3O8-hollandite in the shocked Sixiangkou meteorite. Science 287:1633–1636

    Article  Google Scholar 

  • Gillet P, El Goresy A, Beck P, Chen M (2007) High-pressure mineral assemblages in shocked meteorites and shocked terrestrial rocks: mechanisms of phase transformations and constraints to pressure and temperature histories. In: Ohtani E (Ed), Advances in high-pressure mineralogy, Geol. Soc. Amer. Spec. Pap., 421, pp 57–82

    Google Scholar 

  • Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong XH, Gonzalez-Jimenez JM, Howell D, Huang JX, McGowan N, Pearson NJ, Satsukawa T, Shi R, Williams P, Xiong Q, Yang JS, Zhang M, O’Reilly Y (2016) Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol 57:655–684. https://doi.org/10.1093/petrology/egw011

    Article  Google Scholar 

  • Hu J, Sharp TG (2022) Formation, preservation and extinction of high-pressure minerals in meteorites: temperature effects in shock metamorphism and shock classification. Prog Earth Planet Sci 9:1–22. https://doi.org/10.1186/s40645-021-00463-2

    Article  Google Scholar 

  • Irifune T (1987) An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys Earth Planet Inter 45:324–336

    Article  Google Scholar 

  • Ishii T, Kojitani H, Tsukamoto S, Fujino K, Mori D, Inaguma Y, Tsujino N, Yoshino T, Yamazaki D, Higo Y, Funakoshi K, Akaogi M (2014) High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. Am Mineral 99:1788–1797. https://doi.org/10.2138/am.2014.4736

    Article  Google Scholar 

  • Ishii T, Kojitani H, Fujino K, Yusa H, Mori D, Inaguma Y, Matsushita Y, Yamaura K, Akaogi M (2015) High-pressure high-temperature transitions in MgCr2O4 and crystal structures of new Mg2Cr2O5 and post-spinel MgCr2O4 phases with implications for ultra-high pressure chromitites in ophiolites. Am Mineral 100:59–65. https://doi.org/10.2138/am-2015-4818

    Article  Google Scholar 

  • Ishii T, Tsujino N, Arii H, Fujino K, Miyajima N, Kojitani H, Kunimoto T, Akaogi M (2017) A shallow origin of so-called ultrahigh-pressure chromitites, based on single crystal X-ray structure analysis of the high-pressure Mg2Cr2O5 phase, with modified ludwigite-type structure. Am Mineral 102:2113–2118. https://doi.org/10.2138/am-2017-6050

    Article  Google Scholar 

  • Joswig W, Stachel T, Harris JW, Baur WH, Brey GP (1999) New Ca-silicate inclusions in diamonds—tracers from the lower mantle. Earth Planet Sci Lett 173:1–6

    Article  Google Scholar 

  • Kimura F, Kojitani H, Akaogi M (2021) High-pressure and high-temperature phase relations in the systems KAlSiO4-MgAl2O4 and CaAl2O4-MgAl2O4: stability fields of NAL phases. Phys Earth Planet Inter 310:106632. https://doi.org/10.1016/j.pepi.2020.106632

    Article  Google Scholar 

  • Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol 123:345–357

    Article  Google Scholar 

  • Kubo A, Suzuki T, Akaogi M (1997) High pressure phase equilibria in the system CaTiO3-CaSiO3: stability of perovskite solid solutions. Phys Chem Mineral 24:488–494

    Article  Google Scholar 

  • Kubo T, Kato T, Higo Y, Funakoshi K (2015) Curious kinetic behavior in silica polymorphs solves seifertite puzzle in shocked meteorite. Sci Adv 1:e1500075. https://doi.org/10.1126/sciadv.1500075

    Article  Google Scholar 

  • Langenhorst F, Poirier JP (2000) “Eclogitic” minerals in a shocked basaltic meteorite. Earth Planet Sci Lett 176:259–265

    Article  Google Scholar 

  • Ma C, Tschauner O, Beckett JR, Liu Y, Rossman GR, Sinogeikin SV, Smith JS, Taylor LA (2016) Ahrensite, γ-Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars. Geochim Cosmochim Acta 184:240–256. https://doi.org/10.1016/j.gca.2016.04.042

    Article  Google Scholar 

  • Ma C, Tschauner O, Beckett JR, Rossman GR, Prescher C, Prakapenka VB, Bechtel HA, MacDowell A (2018) Liebermannite, KAlSi3O8, a new shock-metamorphic, high-pressure mineral from the Zagami Martian meteorite. Meteor Planet Sci 53:50–61. https://doi.org/10.1111/maps.13000

    Article  Google Scholar 

  • Ma C, Tschauner O, Beckett JR, Liu Y, Greenberg E, Prakapenka VB (2019) Chenmingite, FeCr2O4 in the CaFe2O4-type structure, a shock-induced, high-pressure mineral in the Tissint martian meteorite. Am Mineral 104:1521–1525. https://doi.org/10.2138/am-2019-6999

    Article  Google Scholar 

  • Miyahara M, Tomioka N, Bindi L (2021) Natural and experimental high-pressure, shock-produced terrestrial and extraterrestrial materials. Prog Earth Planet Sci 8:59. https://doi.org/10.1186/s40645-021-00451-6

    Article  Google Scholar 

  • Moore RO, Gurney JJ (1985) Pyroxene solid solution in garnets included in diamond. Nature 318:553–555

    Article  Google Scholar 

  • Nestola F (2017) Inclusions in super-deep diamonds: windows on the very deep mantle. Rend Fis Acc Lincei 28:595–604. https://doi.org/10.1007/s12210-017-0607-1

    Article  Google Scholar 

  • Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson DG, Pamato MG, Alvaro M, Peruzzo L, Gurney JJ, Moore AE, Davidson J (2018) CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555:237–241. https://doi.org/10.1038/nature25972

    Article  Google Scholar 

  • Ono A, Akaogi M, Kojitani H, Yamashita K, Kobayashi M (2009) High-pressure phase relations and thermodynamic properties of hexagonal aluminous phase and calcium-ferrite phase in the systems NaAlSiO4–MgAl2O4 and CaAl2O4–MgAl2O4. Phys Earth Planet Inter 174:39–49. https://doi.org/10.1016/j.pepi.2008.07.028

    Article  Google Scholar 

  • Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224. https://doi.org/10.1038/nature13080

    Article  Google Scholar 

  • Putnis A, Price GD (1979) High-pressure (Mg, Fe)2SiO4 phases in the Tenham chondritic meteorite. Nature 280:217–218

    Article  Google Scholar 

  • Sharp TG, Lingemann CM, Dupas C, Stöffler D (1997) Natural occurrence of MgSiO3-ilmenite and evidence for MgSiO3-perovskite in a shocked L chondrite. Science 277:352–355

    Article  Google Scholar 

  • Sharp TG, El Goresy A, Wopenka B, Chen M (1999) A post-stishovite SiO2 polymorph in the meteorite Shergotty: implications for impact events. Science 284:1511–1513

    Article  Google Scholar 

  • Smith JV, Mason B (1970) Pyroxene-garnet transformation in Coorara meteorite. Science 168:832–833

    Article  Google Scholar 

  • Stachel T, Brey GP, Harris JW (2005) Inclusions in sublithospheric diamonds: glimpses of deep earth. Elements 1:73–78

    Article  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds—Constraints from mineral inclusions. Ore Geol Rev 34:5–32

    Article  Google Scholar 

  • Sueda Y, Irifune T, Yamada A, Inoue T, Liu X, Funakoshi K (2006) The phase boundary between CaSiO3 perovskite and Ca2SiO4 + CaSi2O5 determined by in situ X-ray observations. Geophys Res Lett 33:L10307. https://doi.org/10.1029/2006GL025772

    Article  Google Scholar 

  • Thomson AR, Kohn SC, Bulanova GP, Smith CB, Araujo D, Walter MJ (2014) Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions. Contrib Mineral Petrol 168:1081. https://doi.org/10.1007/s00410-014-1081-8

    Article  Google Scholar 

  • Thomson AR, Kohn SC, Prabhu A, Walter MJ (2021) Evaluating the formation pressure of diamond-hosted majoritic garnets: a machine learning majorite barometer. J Geophys Res 126:e2020JB020604. https://doi.org/10.1029/2020JB020604

  • Tomioka N, Fujino K (1997) Natural (Mg, Fe)SiO3-ilmenite and -perovskite in the Tenham meteorite. Science 277:1084–1086

    Article  Google Scholar 

  • Tomioka N, Fujino K (1999) Akimotoite, (Mg, Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. Am Mineral 84:267–271

    Article  Google Scholar 

  • Tomioka N, Miyahara M (2017) High-pressure minerals in shocked meteorites. Meteor Planet Sci 52:2017–2039. https://doi.org/10.1111/maps.12902

    Article  Google Scholar 

  • Tomioka N, Mori H, Fujino K (2000) Shock-induced transition of NaAlSi3O8 feldspar into a hollandite structure in a L6 chondrite. Geophys Res Lett 27:3997–4000

    Article  Google Scholar 

  • Tomioka N, Okuchi T (2017) A new high-pressure form of Mg2SiO4 highlighting diffusionless phase transitions of olivine. Sci Rep 7:17351. https://doi.org/10.1038/s41598-017-17698-z

    Article  Google Scholar 

  • Tomioka N, Bindi L, Okuchi T, Miyahara M, Iitaka T, Li Z, Kawatsu T, Xie X, Purevjav N, Tani R, Kodama Y (2021) Poirierite, a dense metastable polymorph of magnesium iron silicate in shocked meteorites. Commun Earth Environ 2:1–8. https://doi.org/10.1038/s43247-020-00090-7

    Article  Google Scholar 

  • Tschauner O (2019) High-pressure minerals. Am Mineral 104:1701–1731. https://doi.org/10.2138/am-2019-6594

    Article  Google Scholar 

  • Tschauner O, Ma C, Beckett JR, Prescher C, Prakapenka VB, Rossman GR (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 346:1100–1102. https://doi.org/10.1126/science.1259369

    Article  Google Scholar 

  • Tschauner O, Huang S, Yang S, Humayun M, Liu W, Corder SNG, Bechtel HA, Tischler J, Rossman GR (2021) Discovery of davemaoite, CaSiO3-perovskite, as a mineral from the lower mantle. Science 374:891–894. https://doi.org/10.1126/science.abl8568

    Article  Google Scholar 

  • Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A, Shirey SB (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334:54–57. https://doi.org/10.1126/science.1209300

    Article  Google Scholar 

  • Wijbrans CH, Rohrbach A, Klemme S (2016) An experimental investigation of the stability of majoritic garnet in the Earth’s mantle and an improved majorite geobarometer. Contrib Mineral Petrol 171:50. https://doi.org/10.1007/s00410-016-1255-7

    Article  Google Scholar 

  • Woodland AB, Girnis AV, Bulatov VK, Brey GP, Höfer HE (2020) Breyite inclusions in diamond: experimental evidence for possible dual origin. Eur J Mineral 32:171–185. https://doi.org/10.5194/ejm-32-171-2020

    Article  Google Scholar 

  • Xie Z, Sharp TG, De Carli PS (2006) Estimating shock pressures based on high-pressure minerals in shock-induced melt veins of L chondrites. Meteor Planet Sci 41:1883–1898. https://doi.org/10.1111/j.1945-5100.2006.tb00458.x

    Article  Google Scholar 

  • Yagi A, Suzuki T, Akaogi M (1994) High pressure transitions in the system KAlSi3O8-NaAlSi3O8. Phys Chem Mineral 21:12–17

    Article  Google Scholar 

  • Yamamoto S, Kojima T, Hirose K, Maruyama S (2009) Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 109:314–322

    Article  Google Scholar 

  • Yang JS, Dorbrzhinetskaya L, Bai WJ, Fang QS, Robinson PT, Zhang J, Green HW II (2007) Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geol 35:875–878

    Article  Google Scholar 

  • Zhou Y, Irifune T, Ohfuji H, Shinmei T, Du W (2017) Stability region of K0.2Na0.8AlSi3O8 hollandite at 22 GPa and 2273 K. Phys Chem Mineral 44:33–42. https://doi.org/10.1007/s00269-016-0834-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Akaogi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akaogi, M. (2022). High-Pressure Minerals from the Earth’s Mantle and in Shocked Meteorites. In: High-Pressure Silicates and Oxides. Advances in Geological Science. Springer, Singapore. https://doi.org/10.1007/978-981-19-6363-6_11

Download citation

Publish with us

Policies and ethics