Skip to main content
Log in

Inclusions in super-deep diamonds: windows on the very deep Earth

  • Earth and Materials Science
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Diamonds are the deepest terrestrial materials that reach the Earth’s surface after a very long and complex travel through our Planet. In detail, these pure-carbon minerals might be formed at very variable depths in the mantle from about 120–250 km, so-called “lithospheric diamonds” or from about 300–1000 or more km, so-called “super-deep diamonds”. Both lithospheric and super-deep diamonds can transport minerals and/or fluid inclusions within them, which are real “fragments of deep Earth” allowing geologists to better understand how the Earth works at those great depths. Although super-deep diamonds only represent about 6% of the global diamond population, such special objects are extremely intriguing as they form at depths potentially even >1000 km in the mantle, opening new scenarios on what we knew about the interior of the Earth. This is why super-deep diamonds are among the most studied samples in mantle mineralogy. In this review, I will focus on the two most common mineral inclusions in super-deep diamonds, ferropericlase (Mg,Fe)O, and CaSiO3-walstromite, on the recent discovered hydrous ringwoodite Mg2SiO4 within a Brazilian diamond and on a new category of large diamonds, called CLIPPIR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Modified after McCammon (2001)

Fig. 6

Modified after Palot et al. (2016)

Fig. 7

Modified after Smith et al. (2016)

Similar content being viewed by others

References

  • Angel RJ, Mazzucchelli ML, Alvaro M, Nimis P, Nestola F (2014) Geobarometry from host-inclusion systems: the role of elastic relaxation. Am Min 99:2146–2149

    Article  Google Scholar 

  • Angel RJ, Alvaro M, Nestola F, Mazzucchelli ML (2015a) Diamond thermoelastic properties and implications for determining the pressure of formation of diamond–inclusion systems. Russ Geol Geophys 56:225–234

    Article  Google Scholar 

  • Angel RJ, Nimis P, Mazzucchelli ML, Alvaro M, Nestola F (2015b) How large are departures from lithostatic pressure? Constraints from the host-inclusion elasticity. J Metamorph Geol 33:801–813

    Article  Google Scholar 

  • Anzolini C, Angel RJ, Merlini M, Derzsi M, Tokár K, Milani S, Krebs MY, Brenker FE, Nestola F, Harris JW (2016) Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos 265:138–147

    Article  CAS  Google Scholar 

  • Anzolini C, Prencipe M, Romano C, Vona A, Alvaro M, Angel RJ, Lorenzon SS, Smith EM, Nestola F (2017) Depth of formation of super-deep diamonds: the role of CaSiO3 silicate. Geophys Res Lett (under review)

  • Binns RA, Davis RJ, Reed SJB (1969) Ringwoodite, natural (Mg, Fe)2SiO4 spinel in the Tenham meteorite. Nature 221:943–944

    Article  CAS  Google Scholar 

  • Bolfan-Casanova N, Keppler H, Rubie DC (2000) Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth Planet Sci Lett 182:209–221

    Article  CAS  Google Scholar 

  • Brenker FE, Vincze L, Vekemans B, Nasdala L, Stachel T, Vollmer C, Kersten M, Somogyi A, Adams F, Joswig W, Harris JW (2005) Detection of a Ca-rich lithology in the Earth’s deep (>300 km) convecting mantle. Earth Planet Sci Lett 236:579–587

    Article  CAS  Google Scholar 

  • Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9

    Article  CAS  Google Scholar 

  • Collerson KD, Williams Q, Kamber BS, Omori S, Arai H, Ohtani E (2010) Majoritic garnet: a new approach to pressure estimation of shock events in meteorites and the encapsulation of sub-lithospheric inclusions in diamond. Geochim Cosmochim Acta 74:5939–5957

    Article  CAS  Google Scholar 

  • Day HW (2012) A revised diamond-graphite transition curve. Am Mineral 97:52–62

    Article  CAS  Google Scholar 

  • Essene E (1974) High-pressure transformations in CaSiO3. Contrib Mineral Petrol 45:247–250

    Article  CAS  Google Scholar 

  • Frost DJ (2008) The upper mantle and the transition zone. Elements 4:171–176

    Article  CAS  Google Scholar 

  • Frost DJ, Dolejs D (2007) Experimental determination of the effect of H2O on the 410-km seismic discontinuity. Earth Planet Sci Lett 256:182–195

    Article  CAS  Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    Article  CAS  Google Scholar 

  • Frost DJ, Liebske C, Langenhorst F, McCammon CA, Tronnes RG, Rubie DC (2004) Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428:409–412

    Article  CAS  Google Scholar 

  • Gasparik T, Wolf K, Smith CM (1994) Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. Am Mineral 79:1219–1222

    CAS  Google Scholar 

  • Harris JW, Hutchison MT, Hursthouse M, Light M, Harte B (1997) A new tetragonal silicate mineral. Nature 387:486–488

    Article  CAS  Google Scholar 

  • Harte B (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral Mag 74:189–215

    Article  CAS  Google Scholar 

  • Harte B (2011) Diamond window into the lower mantle. Science 334:51–52

    Article  CAS  Google Scholar 

  • Hayman PC, Kopylova MG, Kaminsky FV (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib Mineral Petrol 149:430–445

    Article  CAS  Google Scholar 

  • Howell D (2012) Strain-induced birefringence in natural diamond: a review. Eur J Mineral 24:575–585

    Article  CAS  Google Scholar 

  • Howell D, Nasdala L (2008) Using strain birefringence in diamond to estimate the remnant pressure on an inclusion. Aust J Earth Sci 55:1175–1178

    Article  Google Scholar 

  • Howell D, Wood IG, Dobson DP, Jones AP, Nasdala L, Harris JW (2010) Quantifying strain birefringence halos around inclusions in diamond. Contrib Mineral Petrol 160:705–717

    Article  CAS  Google Scholar 

  • Howell D, Wood IG, Nestola F, Nimis P, Nasdala L (2012) Inclusions under remnant pressure in diamond: a multi-technique approach. Eur J Mineral 24:563–573

    Article  CAS  Google Scholar 

  • Huang XG, Xu YS, Karato SI (2005) Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434:746–749

    Article  CAS  Google Scholar 

  • Izraeli ES, Harris JW, Navon O (1999) Raman barometry of diamond formation. Earth Planet Sci Lett 173:351–360

    Article  CAS  Google Scholar 

  • Jacob DE, Kronz A, Viljoen KS (2004) Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contrib Mineral Petrol 146:566–576

    Article  CAS  Google Scholar 

  • Kaminsky F (2012) Mineralogy of the lower mantle: a review of “super-deep” mineral inclusions in diamond. Earth Sci Rev 110:127–147

    Article  CAS  Google Scholar 

  • Kaminsky FV, Wirth R (2011) Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can Mineral 49:555–572

    Article  CAS  Google Scholar 

  • Kaminsky FV, Zakharchenko OD, Davies R, Griffin WL, Khachatryan-Blinova GK, Shiryaev AA (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Mineral Petrol 140:734–753

    Article  CAS  Google Scholar 

  • Kaminsky FV, Sablukov SM, Belousova EA, Andreazza P, Tremblay M, Griffin WL (2010) Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. Lithos 114:16–29

    Article  CAS  Google Scholar 

  • Kaminsky FV, Wirth R, Schreiber A (2013) Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association. Can Mineral 51:669–688

    Article  CAS  Google Scholar 

  • Kaminsky FV, Wirth R, Schreiber A (2015a) A microinclusion of lower-mantle rock and other minerals and nitrogen lower-mantle inclusions in a diamond. Can Mineral 53:83–104

    Article  CAS  Google Scholar 

  • Kaminsky FV, Ryabchikov ID, McCammon CA, Longo M, Abakumov AM, Turner S, Heidari H (2015b) Oxidation potential in the Earth’s lower mantle as recorded from ferropericlase inclusions in diamond. Earth Planet Sci Lett 417:49–56

    Article  CAS  Google Scholar 

  • Karato S, Riedel MR, Yuen DA (2001) Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Phys Earth Planet Inter 127:83–108

    Article  Google Scholar 

  • Lord OT, Walter MJ, Dasgupta R, Walker D, Clark SM (2009) Melting in the Fe–C system to 70 GPa. Earth Planet Sci Lett 284:157–167

    Article  CAS  Google Scholar 

  • McCammon CA (2001) Deep diamond mysteries. Science 293:813–814

    Article  CAS  Google Scholar 

  • Mikhail S, Guillermier C, Franchi IA, Beard AD, Crispin K, Verchovsky AB, Jones AP, Milledge HJ (2014) Empirical evidence for the fractionation of carbon isotopes between diamond and iron carbide from the Earth’s mantle. Geochem Geophys Geosyst 15:855–866

    Article  CAS  Google Scholar 

  • Milani S, Nestola F, Alvaro M, Pasqual D, Mazzucchelli ML, Domeneghetti MC, Geiger CA (2015) Diamond-garnet geobarometry: the role of garnet compressibility and expansivity. Lithos 227:140–147

    Article  CAS  Google Scholar 

  • Nestola F (2015a) Ringwoodite: its importance in Earth Sciences. In: Armbruster T, Danisi RM (eds) Highlights in mineralogical crystallography. De Gruyter, Berlin, pp 127–148

    Google Scholar 

  • Nestola F (2015b) The crucial role of crystallography in diamond research. Rend Fis Acc Lincei 26:225–233

    Article  Google Scholar 

  • Nestola F, Smyth JR (2016) Diamonds and water in the deep Earth: a new scenario. Int Geol Rev 58:263–276

    Article  Google Scholar 

  • Nestola F, Nimis P, Ziberna L, Longo M, Marzoli A, Harris JW, Manghnani MH, Fedortchouk Y (2011) First crystal-structure determination of olivine in diamond: composition and implications for provenance in the Earth’s mantle. Earth Planet Sci Lett 305:249–255

    Article  CAS  Google Scholar 

  • Nestola F, Nimis P, Angel RJ, Milani S, Bruno M, Prencipe M, Harris JW (2014) Olivine with diamond-imposed morphology included in diamonds. Syngenesis or protogenesis? Int Geol Rev 56:1658–1667

    Article  Google Scholar 

  • Nestola F, Burnham AD, Peruzzo L, Tauro L, Alvaro M, Walter MJ, Gunter M, Anzolini C, Kohn S (2016) Tetragonal almandine-pyrope phase, TAPP: finally a name for it, the new mineral jeffbenite. Mineral Mag 80:1219–1232

    Article  CAS  Google Scholar 

  • Novella D, Bolfan-Casanova N, Nestola F, Harris JW (2015) H2O in olivine and garnet inclusions still trapped in diamonds from the Siberian craton: implications for the water content of cratonic lithosphere peridotites. Lithos 230:180–183

    Article  CAS  Google Scholar 

  • Ohtani E (2015) Hydrous minerals and the storage of water in the deep mantle. Chem Geol 418:6–15

    Article  CAS  Google Scholar 

  • Palot M, Jacobsen SD, Townsend JP, Nestola F, Marquardt K, Miyajima N, Harris JW, Stachel T, McCammon CA, Pearson DG (2016) Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos 265:237–243

    Article  CAS  Google Scholar 

  • Palyanov YN, Bataleva YV, Sokol AG, Borzdov YM, Kupriyanov IN, Reutsky VN, Sobolev NV (2013) Mantle-slab interaction and redox mechanism of diamond formation. Proc Natl Acad Sci USA 110:20408–20413

    Article  CAS  Google Scholar 

  • Pamato MG, Kurnosov A, Boffa Ballaran TB, Frost DJ, Ziberna L, Giannini M, Speziale S, Tkachev SN, Zhuravlev KK, Prakapenka VB (2016) Single crystal elasticity of majoritic garnets: stagnant slabs and thermal anomalies at the base of the transition zone. Earth Planet Sci Lett 451:114–124

    Article  CAS  Google Scholar 

  • Pearson DG, Brenker F, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) A hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224

    Article  CAS  Google Scholar 

  • Rosa AD, Hilairet N, Ghosh S, Perrillat JP, Garbarino G, Merkel S (2016) Evolution of grain sizes and orientations during phase transitions in hydrous Mg2SiO4. J Geophys Res 121:7161–7176

    Article  CAS  Google Scholar 

  • Shirey SB, Cartigny P, Frost DJ, Keshav S, Nestola F, Nimis P, Pearson DG, Sobolev NV, Walter MJ (2013) Diamonds and the geology of mantle carbon. Rev Mineral Geochem 75:355–421

    Article  CAS  Google Scholar 

  • Smith EM, Shirey SB, Nestola F, Bullock ES, Wang J, Richardson SH, Wang W (2016) Large gem diamonds from metallic liquid in Earth’s deep mantle. Science 354:1403–1405

    Article  CAS  Google Scholar 

  • Sobolev NV, Fursenko BA, Goryainov SV, Shu J, Hemley RJ, Mao A, Boyd FR (2000) Fossilized high pressure from the earth’s deep interior: the coesite-in-diamond barometer. Proc Natl Acad Sci USA 97:11875–11879

    Article  CAS  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34:5–32

    Article  Google Scholar 

  • Thomas SM, Jacobsen SD, Bina CR, Reichart P, Moser M, Hauri EH, Koch-Müller M, Smyth JR, Dollinger G (2015) Quantification of water in hydrous ringwoodite. Front Earth Sci. doi:10.3389/feart.2014.00038

    Google Scholar 

  • Walter MJ, Bulanova GP, Armstrong LS, Keshav S, Blundy JD, Gudfinnsson G, Lord OT, Lennie AR, Clark SM, Smith CB, Gobbo L (2008) Primary carbonatite melt from deeply subducted oceanic crust. Nature 454:622–626

    Article  CAS  Google Scholar 

  • Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A, Shirey SB (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334:54–57

    Article  CAS  Google Scholar 

  • Wijbrans CH, Rohrbach A, Klemme S (2016) An experimental investigation of the stability of majoritic garnet in the Earth’s mantle and an improved majorite geobarometer. Contrib Mineral Petrol. doi:10.1007/s00410-016-1255-7

    Google Scholar 

  • Wirth R, Vollmer C, Brenker F, Matsyuk S, Kaminsky F (2007) Nanocrystalline hydrous aluminium silicate in super-deep diamonds from Juina (Mato Grosso State, Brazil). Earth Planet Sci Lett 259:384–399

    Article  CAS  Google Scholar 

  • Wirth R, Kaminsky FV, Matsyuk S, Schreiber A (2009) Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil. Earth Planet Sci Lett 286:292–303

    Article  CAS  Google Scholar 

  • Wirth R, Dobrzhinetskaya L, Harte B, Schreiber A, Green HW (2014) High-Fe (Mg, Fe)O inclusion in diamond apparently from the lowermost mantle. Earth Planet Sci Lett 404:365–376

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the European Research Council for supporting his research through the ERC Starting Grant INDIMEDEA (Agreement No. 307322) and two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Nestola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nestola, F. Inclusions in super-deep diamonds: windows on the very deep Earth. Rend. Fis. Acc. Lincei 28, 595–604 (2017). https://doi.org/10.1007/s12210-017-0607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-017-0607-1

Keywords

Navigation