Skip to main content

A Critical Review of Fatigue Life Prediction on 316LN SS

  • Conference paper
  • First Online:
Advances in Modelling and Optimization of Manufacturing and Industrial Systems

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 497 Accesses

Abstract

Fatigue failure is referred to the slow deterioration process of structures that are subjected to cyclic loading, including the structural elements of nuclear power plants, aircraft, railways, and rotating machinery. During their operating life, high-temperature components resist three major damaging phenomena: creep, fatigue, creep-fatigue interaction (CFI), and oxidation. Temperatures, strain amplitude, strain rates, hold period effect on fatigue, creep-fatigue interaction, and fatigue crack growth (FCG) for 316LN stainless steel (SS) are presented, and dynamic strain aging (DSA) role is discussed in the article. The fatigue life (FL) increases with nitrogen content (NC), and reduction in the stress precipitation and stress relaxation (SR) due to changes in dislocation structure are given in detail. Fatigue life decrease with increasing hold time is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya S et al (2019) Effect of high strain rate deformation on the properties of SS304L and SS316LN Alloys. Mech Mater 136:103073

    Article  MathSciNet  Google Scholar 

  2. Babu MN et al (2010) On the anomalous temperature dependency of fatigue crack growth of SS 316(N) weld. Mater Sci Eng A 527(20):5122–5129

    Article  Google Scholar 

  3. Babu MN et al. (2013) Fatigue crack growth behavior of 316LN stainless steel with different nitrogen contents. Proc Eng 55:716–21

    Google Scholar 

  4. Babu MN, Sasikala G (2020) Effect of temperature on the fatigue crack growth behaviour of SS316L (N). Int J Fatigue 140:105815

    Article  Google Scholar 

  5. Babu MN, Venugopal S, Sasikala G (2014) Evaluation of fatigue crack growth behaviour of SS 316 LN steel under mixed mode loading (Mode I and II). Proc Eng 86:639–644

    Article  Google Scholar 

  6. Brinkman CR (1985) High-temperature time-dependent fatigue behaviour of several engineering structural alloys. Int Met Rev 30(1):235–258

    Article  Google Scholar 

  7. Byun TS, Lee EH, Hunn JD (2003) Plastic deformation in 316LN stainless steel-characterization of deformation microstructures. J Nucl Mater 321(1):29–39

    Article  Google Scholar 

  8. Choudhary BK, Isaac Samuel E, Bhanu Sankara Rao K, Mannan SL (2001) Tensile stress-strain and work hardening behaviour of 316ln austenitic stainless steel. Mater Sci Technol 17(2):223–231

    Article  Google Scholar 

  9. Dutt BS et al (2014) Effect of nitrogen addition and test temperatures on elastic-plastic fracture toughness of SS 316 LN. Proc Eng 86:302–307

    Article  Google Scholar 

  10. Fan Y-N, Shi H-J, Tokuda K (2015) A generalized hysteresis energy method for fatigue and creep-fatigue life prediction of 316L (N). Mater Sci Eng A 625:205–212

    Article  Google Scholar 

  11. Ganesan V et al. (2022) Role of nitrogen content on interrelationship between creep deformation and damage behaviour of 316LN SS. Trans Indian National Acad Eng 1–9

    Google Scholar 

  12. Ganesan V, Mathew MD, Parameswaran P, Laha K (2013) Effect of nitrogen on evolution of dislocation substructure in 316LN SS during creep. Proc Eng 55:36–40

    Article  Google Scholar 

  13. Ganesan V, Mathew MD, Parameswaran P, Bhanu Sankara K, Rao. (2010) Creep strengthening of low carbon grade type 316LN stainless steel by nitrogen. Trans Indian Inst Met 63(2):417–421

    Article  Google Scholar 

  14. Gao J, Tan J, Wu X, Xia S (2019) Effect of grain boundary engineering on corrosion fatigue behavior of 316LN stainless steel in borated and lithiated high-temperature water. Corros Sci. https://doi.org/10.1016/j.corsci.2019.01.036

    Article  Google Scholar 

  15. GV, Prasad Reddy, and Harmain GA. (2018) Simulation of low cycle fatigue stress-strain response in 316LN stainless steel using non-linear isotropic kinematic hardening model—a comparison of different approaches. Fatigue Fract Eng Mater Struct 41(2):336–347

    Article  Google Scholar 

  16. Hales R (1980) A quantitative metallographic assessment of structural degradation of type 316 stainless steel during creep-fatigue. Fatigue Fract Eng Mater Struct 3(4):339–356

    Article  Google Scholar 

  17. Jameel A, Harmain GA (2016) Modeling and numerical simulation of fatigue crack growth in cracked specimens containing material discontinuities. Strength Mater 48(2):294–307

    Article  Google Scholar 

  18. Jayakumar T et al (2013) Nitrogen enhanced 316LN austenitic stainless steel for sodium cooled fast reactors. Trans Tech Publ, In Advanced Materials Research, pp 670–680

    Google Scholar 

  19. Kant C, Harmain GA (2021a) An investigation of constant amplitude loaded fatigue crack propagation of virgin and pre-strained aluminium alloy. In: International conference on advanced manufacturing and materials processing (CAMMP 2021), Bentham Science Publishers, Jaipur

    Google Scholar 

  20. Kant C, Harmain GA (2021b) An investigation of fatigue crack closure on 304LSS and 7020-T7 aluminium alloy. In: International conference on progressive research in industrial and mechanical engineering (PRIME-2021), Patna

    Google Scholar 

  21. Kant C, Harmain GA (2021c) Fatigue life prediction under interspered overload in constant amplitude. In: 9th International conference on fracture fatigue and wear (FFW 2021) (Lecture notes in mechanical engineering), Springer, Ghent, Belgium

    Google Scholar 

  22. Kant C, Harmain GA (2021) Analysis of single overload effect on fatigue crack propagation using modified virtual crack annealing model. In: International conference on mechanical engineering

    Google Scholar 

  23. Kant C, Harmain GA (2021d) A model based study of fatigue life prediction for multifarious loadings. Key Eng Mater 882:296–327. https://www.scientific.net/KEM.882.296

  24. Kanth SA, Harmain GA, Jameel A (2021) Investigation of fatigue crack growth in engineering components containing different types of material irregularities by XFEM. Mech Adv Mater Struct1–39. https://doi.org/10.1080/15376494.2021.1907003

  25. Kanth SA, Harmain GA, Jameel A (2018) Modeling of nonlinear crack growth in steel and aluminum alloys by the element free Galerkin method. Mater Today Proc 5(9):18805–18814

    Article  Google Scholar 

  26. Kanth SA, Lone AS, Harmain GA, Jameel A (2019) Elasto plastic crack growth by XFEM: a review. Mater Today Proc 18:3472–3481. https://doi.org/10.1016/j.matpr.2019.07.275

    Article  Google Scholar 

  27. Kanth SA, Lone AS, Harmain GA, Jameel A (2019b) Modeling of embedded and edge cracks in steel alloys by XFEM. Mater Today Proc 26(xxxx):814–18. https://doi.org/10.1016/j.matpr.2019.12.423

  28. Kim DW, Chang J-H, Ryu W-S (2008) Evaluation of the creep-fatigue damage mechanism of type 316L and type 316LN stainless steel. Int J Press Vessels Pip 85(6):378–384

    Article  Google Scholar 

  29. Kim DW, Kim WG, Ryu W-S (2003) Role of dynamic strain aging on low cycle fatigue and crack propagation of type 316L (N) stainless steel. Int J Fatigue 25(9–11):1203–1207

    Article  Google Scholar 

  30. Krishnan SA et al (2015) Coupled FEM and experimental analysis to characterize initial crack growth regime in AISI 316L (N) stainless steel. Int J Struct Integrity 6:390–401

    Article  Google Scholar 

  31. Kumar JG et al (2010) High temperature design curves for high nitrogen grades of 316LN stainless steel. Nucl Eng Des 240(6):1363–1370

    Article  Google Scholar 

  32. Li B et al (2020) Cyclic deformation and cracking behavior of 316LN stainless steel under thermomechanical and isothermal fatigue loadings. Mater Sci Eng A 773:138866

    Article  Google Scholar 

  33. Li B et al. (2021) Cyclic deformation behavior and dynamic strain aging of 316LN stainless steel under low cycle fatigue loadings at 550 °C. Mater Sci Eng A 818(November 2020):141411. https://doi.org/10.1016/j.msea.2021.141411

  34. Lone AS, Jameel A, Harmain GA (2018) A coupled finite element-element free Galerkin approach for modeling frictional contact in engineering components. Mater Today Proc 5(9):18745–18754. https://doi.org/10.1016/j.matpr.2018.06.221

    Article  Google Scholar 

  35. Lone AS, Kanth SA, Harmain GA, Jameel A (2019) XFEM Modeling of frictional contact between elliptical inclusions and solid bodies. Mater Today Proc 26(xxxx): 819–24. https://doi.org/10.1016/j.matpr.2019.12.424

  36. Lone AS, Kanth SA, Jameel A, Harmain GA (2019) A state of art review on the modeling of contact type nonlinearities by extended finite element method. Mater Today Proc 18:3462–3471. https://doi.org/10.1016/j.matpr.2019.07.274

    Article  Google Scholar 

  37. Mathew MD, Laha K, Sandhya R (2013) Creep and low cycle fatigue behaviour of fast reactor structural materials. Proc Eng 55:17–26

    Article  Google Scholar 

  38. Mathew MD, Sasikala G, Bhanu Sankara Rao K, Mannan SL (1991) Influence of carbon and nitrogen on the creep properties of type 316 stainless steel at 873 K. Mater Sci Eng A 148(2):253–260

    Article  Google Scholar 

  39. Nam SW et al (1996) The normalized coffin-manson plot in terms of a new damage function based on grain boundary cavitation under creep-fatigue condition. Metall Mater Trans A 27(5):1273–1281

    Article  Google Scholar 

  40. Nilsson JO (1988) Effect of nitrogen on creep-fatigue interaction in austenitic stainless steels at 600 °C. In: Low cycle fatigue, ASTM International

    Google Scholar 

  41. Oh YJ, Ryu WS, Hong JH (1997) The effect of nitrogen on the grain boundary precipitation and sensitization of Type 316 L stainless steels. J Korean Inst Met Mater (South Korea) 35(8):942–50

    Google Scholar 

  42. Palaparti DP, Rao V, Ganesan JC, Prasad Reddy GV (2021) Tensile flow analysis of austenitic type 316LN stainless steel: effect of nitrogen content. J Mater Eng Perform 30(3):2074–2082. https://doi.org/10.1007/s11665-021-05484-y

    Article  Google Scholar 

  43. Reddy GV, Prasad RK et al (2015) Effect of strain rate on low cycle fatigue of 316LN stainless steel with varying nitrogen content: part-I cyclic deformation behavior. Int J Fatigue 81:299–308

    Article  Google Scholar 

  44. Reddy GV, Prasad AN et al (2015) Thermomechanical and isothermal fatigue behavior of 316LN stainless steel with varying nitrogen content. Metall Mater Trans A 46(2):695–707

    Article  Google Scholar 

  45. Reddy GV, Prasad RS, Bhanu Sankara Rao K, Sankaran S (2010) Influence of nitrogen alloying on dynamic strain ageing regimes in low cycle fatigue of AISI 316LN stainless steel. Proc Eng 2(1):2181–2188

    Article  Google Scholar 

  46. Reddy GV, Prasad RS, Sankaran S, Mathew MD (2014) Low cycle fatigue behavior of 316LN stainless steel alloyed with varying nitrogen content part I: cyclic deformation behavior. Metall and Mater Trans A 45(11):5044–5056

    Article  Google Scholar 

  47. Reddy GV, Prasad RS, Sankaran S, Mathew MD (2014) Low cycle fatigue behavior of 316LN stainless steel alloyed with varying nitrogen content part II: fatigue life and fracture behavior. Metall Mater Trans A 45(11):5057–5067

    Article  Google Scholar 

  48. Rodriguez P, Bhanu Sankara K, Rao. (1993) Nucleation and growth of cracks and cavities under creep-fatigue interaction. Prog Mater Sci 37(5):403–480

    Article  Google Scholar 

  49. Roy SC, Sunil Goyal R, Sandhya, and S K Ray. (2013) Analysis of hysteresis loops of 316L (N) stainless steel under low cycle fatigue loading conditions. Proc Eng 55:165–170

    Article  Google Scholar 

  50. Samantaray D et al (2017) Plastic deformation of SS 316LN: thermo-mechanical and microstructural aspects. Proc Eng 207:1785–1790

    Article  Google Scholar 

  51. Samantaray D, Mandal S, Phaniraj C, Bhaduri AK (2011) Flow behavior and microstructural evolution during hot deformation of AISI type 316 L (N) austenitic stainless steel. Mater Sci Eng A 528(29–30):8565–8572

    Google Scholar 

  52. Samuel EI, Choudhary BK, Bhanu Sankara K, Rao (2002) Influence of temperature and strain rate on tensile work hardening behaviour of Type 316 LN austenitic stainless steel. Scripta Mater 46(7):507–512

    Article  Google Scholar 

  53. Samuel KG, Sasikala G, Ray SK (2011) On R ratio dependence of threshold stress intensity factor range for fatigue crack growth in type 316(N) stainless steel weld. Mater Sci Technol 27(1):371–376

    Article  Google Scholar 

  54. Samuel KG, Mannan SL, Rodriguez P (1988) Serrated yielding in AISI 316 stainless steel. Acta Metall 36(8):2323–2327

    Article  Google Scholar 

  55. Sarkar A, Nagesha A, Parameswaran P et al (2013) Influence of dynamic strain aging on the deformation behavior during ratcheting of a 316LN stainless steel. Mater Sci Eng A 564:359–368

    Article  Google Scholar 

  56. Sarkar A et al (2018) Manifestations of dynamic strain aging under low and high cycle fatigue in a type 316LN stainless steel. Mater High Temp 35(6):523–528

    Article  Google Scholar 

  57. Sarkar A, Dash MK, Nagesha A (2021) Mechanism of HCF-creep interaction in a Type 316LN stainless steel. Mater Sci Eng A 825(July):141841. https://doi.org/10.1016/j.msea.2021.141841

    Article  Google Scholar 

  58. Sarkar A, Nagesha A, Sandhya R, Mathew MD (2013) Effect of Temperature on ratcheting behaviour of 316LN SS. Proc Eng 55:650–654

    Article  Google Scholar 

  59. Sarkar A, Nagesha A, Sandhya R, Mathew MD (2015) A perspective on fatigue damage by decoupling LCF and HCF loads in a type 316LN stainless steel. High Temp Mater Process (London) 34(5):435–439

    Google Scholar 

  60. Sasikala G, Babu MN, Dutt BS, Venugopal S (2013) Characterisation of fatigue crack growth and fracture behaviour of SS 316L (N) base and weld materials. Trans Tech Publ, In Advanced Materials Research, pp 449–459

    Google Scholar 

  61. Sauzay M et al (2004) Creep-fatigue behaviour of an AISI stainless steel at 550 °C. Nucl Eng Des 232(3):219–236

    Article  Google Scholar 

  62. Schwartz J, Fandeur O, Rey C (2010) Modelling of Low Cycle Fatigue Initiation of 316LN Based on crystalline plasticity and geometrically necessary dislocations. Trans Tech Publ, In Materials Science Forum, pp 1137–1142

    Google Scholar 

  63. Sistaninia M, Niffenegger M (2015) Fatigue crack initiation and crystallographic growth in 316L stainless steel. Int J Fatigue 70:163–170

    Article  Google Scholar 

  64. Srinivasan VS et al (1991) Effects of temperature on the low cycle fatigue behaviour of nitrogen alloyed type 316L stainless steel. Int J Fatigue 13(6):471–478

    Article  Google Scholar 

  65. Srinivasan VS et al (1999) High temperature time-dependent low cycle fatigue behaviour of a type 316L (N) stainless steel. Int J Fatigue 21(1):11–21

    Article  Google Scholar 

  66. Srinivasan VS et al (2003) Low cycle fatigue and creep-fatigue interaction behavior of 316L (N) stainless steel and life prediction by artificial neural network approach. Int J Fatigue 25(12):1327–1338

    Article  Google Scholar 

  67. Suresh Kumar T, Nagesha A, Mariappan K, Dash MK (2021) Deformation and failure behaviour of 316 LN austenitic stainless steel weld joint under thermomechanical low cycle fatigue in as-welded and thermally aged conditions. Int J Fatigue 149(January):106269. https://doi.org/10.1016/j.ijfatigue.2021.106269

    Article  Google Scholar 

  68. Taylor D, Knott JF (1981) Fatigue crack propagation behaviour of short cracks; the effect of microstructure. Fatigue Fract Eng Mater Struct 4(2):147–155

    Article  Google Scholar 

  69. Valsan M, Nagesha A (2010) Low cycle fatigue and creep-fatigue interaction behaviour of 316L(N) stainless steel and its welds. Trans Indian Inst Met 63(2–3):209–215

    Article  Google Scholar 

  70. Vogt JB et al (1991) Low-temperature fatigue of 316L and 316LN austenitic stainless steels. Metall Trans A 22(10):2385–2392

    Article  Google Scholar 

  71. Wang S, Zhang M, Wu H, Yang B (2016) Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel. Mater Charact 118:92–101

    Article  Google Scholar 

  72. Wang S, Yang K, Shan Y, Li L (2008) Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels. Mater Sci Eng A 490(1–2):95–104

    Article  Google Scholar 

  73. Yan X-l, Zhang X-C, Shan-tung T, Mannan S-L (2015) International journal of pressure vessels and piping review of creep e fatigue endurance and life prediction of 316 stainless steels. Int J Press Vessels Pip 126–127:17–28

    Article  Google Scholar 

  74. Zhang X, Shan-Tung T, Xuan F (2014) Creep–fatigue endurance of 304 stainless steels. Theoret Appl Fract Mech 71:51–66

    Article  Google Scholar 

  75. Zhang X, Zhang Y, Li Y, Liu J (2013) Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation. Mater Sci Eng, A 559:301–306

    Article  Google Scholar 

  76. Zheng Y et al. (2022) Multiaxial low cycle fatigue behavior and life prediction method of 316LN stainless steel at 550 °C. Int J Fatigue 156(October 2021): 106637. https://doi.org/10.1016/j.ijfatigue.2021.106637

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mursaleen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R., Mursaleen, M., Harmain, G.A., Kumar, A. (2023). A Critical Review of Fatigue Life Prediction on 316LN SS. In: Singh, R.P., Tyagi, M., Walia, R.S., Davim, J.P. (eds) Advances in Modelling and Optimization of Manufacturing and Industrial Systems. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-6107-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6107-6_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6106-9

  • Online ISBN: 978-981-19-6107-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics