Skip to main content

Collateral Effects of Nanopollution on Human and Environmental Health

  • Chapter
  • First Online:
Agricultural and Environmental Nanotechnology

Abstract

The development of nanotechnology in the field of agriculture and environment during recent times has significantly advanced the area and paved the way for future nanotechnologies. Though the substantial effect of the particle size on the material toxicities has been well recognized, however, the effect of the particle size on the nanoparticle behavior and reactivity is not well known. Currently, nanoparticles are used to tackle the environment pollution in terms of removal of toxins from water, soil, sewage, and air. They have also been employed in environmental instrumentation, including sensors, green nanotechnology, and greenhouse gas reduction. However, apart from these, there are some harmful effects of the nanoparticles on the environment. Therefore, using NPs in remediation treatments is not a short-term solution. However, it is critical to study and assess NP environmental effect, interactions with live creatures, and their accumulation in ecosystems. Considering all these factors, the current chapter is focused on the study of the collateral effects of the nanoparticles on the human and environmental health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adeel M, Shakoor N, Shafiq M, Pavlicek A, Part F, Zafiu C, Raza A, Ahmad MA, Jilani G, White JC, Ehmoser EK, Lynch I, Ming X, Rui YK (2021) A critical review of the environmental impacts of manufactured nano-objects on earthworm species. Environ Pollut 290:118041

    Article  CAS  Google Scholar 

  • Adhikari T, Dharmarajan R (2021) Nanocontaminants in soil: emerging concerns and risks. Int J Environ Sci Technol 19:9129. https://doi.org/10.1007/s13762-021-03481-1

    Article  CAS  Google Scholar 

  • Aguilar-Perez KM, Aviles-Castrillo JI, Ruiz-Pulido G, Medina DI, Parra-Saldivar R, Iqbal HMN (2021) Nanoadsorbents in focus for the remediation of environmentally-related contaminants with rising toxicity concerns. Sci Total Environ 779:146465

    Article  CAS  Google Scholar 

  • Ajdary M, Keyhanfar F, Moosavi MA, Shabani R, Mehdizadeh M, Varma RS (2021) Potential toxicity of nanoparticles on the reproductive system animal models: a review. J Reprod Immunol 148:103384

    Article  CAS  Google Scholar 

  • Akhtar K, Javed Y, Jamil Y, Muhammad F (2020) Functionalized cobalt ferrite cubes: toxicity, interactions and mineralization into ferritin proteins. Appl Nanosci 10:3659–3674

    Article  CAS  Google Scholar 

  • Akter M, Sikder MT, Rahman MM, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Advert Res 9:1–16

    Article  CAS  Google Scholar 

  • Aldaco R, Hoehn D, Laso J, Margallo M, Ruiz-Salmón J, Cristobal J, Kahhat R, Villanueva-Rey P, Bala A, Batlle-Bayer L (2020) Food waste management during the COVID-19 outbreak: a holistic climate, economic and nutritional approach. Sci Total Environ 742:140524

    Article  CAS  Google Scholar 

  • Asadi Dokht Lish R, Johari SA, Sarkheil M, Yu IJ (2019) On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): a case of silver nanoparticles toxicity. Environ Pollut 255:113358

    Article  CAS  Google Scholar 

  • Assadian E, Zarei MH, Gilani AG, Farshin M, Degampanah H, Pourahmad J (2018) Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biol Trace Elem Res 184:350–357

    Article  CAS  Google Scholar 

  • Ballesteros S, Domenech J, Velázquez A, Marcos R, Hernández A (2021) Ex vivo exposure to different types of graphene-based nanomaterials consistently alters human blood secretome. J Hazard Mater 414:125471

    Article  CAS  Google Scholar 

  • Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A (2020) Effects of titanium dioxide nanoparticles exposure on human health—a review. Biol Trace Elem Res 193:118–129

    Article  Google Scholar 

  • Barik TK, Maity GC, Gupta P, Mohan L, Santra TS (2021) Nanomaterials: an introduction. Nanomaterials and their biomedical applications, vol 16. Springer, Singapore, p 1

    Book  Google Scholar 

  • Barjoveanu G, Teodosiu C, Bucatariu F, Mihai M (2020) Prospective life cycle assessment for sustainable synthesis design of organic/inorganic composites for water treatment. J Clean Prod 272:122672

    Article  CAS  Google Scholar 

  • Begum SLR, Jayawardana UN (2021) A review of nanotechnology as a novel method of gene transfer in plants. J Agric Sci 16(2):300–316

    Google Scholar 

  • Borgheti-Cardoso LN, San Anselmo M, Lantero E, Lancelot A, Serrano JL, Hernández-Ainsa S, Fernàndez-Busquets X, Sierra T (2020) Promising nanomaterials in the fight against malaria. J Mater Chem B 8(41):9428–9448

    Article  Google Scholar 

  • Calderón-Garcidueñas L, González-Maciel A, Mukherjee PS, Reynoso-Robles R, Pérez-Guillé B, Gayosso-Chávez C, Torres-Jordón R, Croos JV, Ahmed IAM, Karloukovski VV, Maher BA (2019) Combustion- and friction-derived magnetic air pollution nanoparticles in human hearts. Environ Res 176:108567

    Article  Google Scholar 

  • Chaturvedi S, Dave PN (2021) Nanowaste and environmental risk. In: Handbook of advanced approaches towards pollution prevention and control, pp 247–260

    Google Scholar 

  • Coccini T, Pignatti P, Spinillo A, De Simone U (2020) Developmental neurotoxicity screening for nanoparticles using neuron-like cells of human umbilical cord mesenchymal stem cells: example with magnetite nanoparticles. Nano 10(8):1607

    CAS  Google Scholar 

  • Committee ES, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C (2018) Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J 16(7):e05327

    Google Scholar 

  • Courtois P, De Vaufleury A, Grosser A, Lors C, Vandenbulcke F (2021) Transfer of sulfidized silver from silver nanoparticles, in sewage sludge, to plants and primary consumers in agricultural soil environment. Sci Total Environ 777:145900. https://doi.org/10.1016/j.scitotenv.2021.145900

    Article  CAS  Google Scholar 

  • De Santiago-Martín A, Constantin B, Guesdon G, Kagambega N, Sébastien R, Cloutier RG (2016) Bioavailability of engineered nanoparticles in soil systems. J Hazard Toxic Radioact Waste 20(1):B4015001

    Article  Google Scholar 

  • Dziewięcka M, Witas P, Karpeta-Kaczmarek J, Kwaśniewska J, Flasz B, Balin K, Augustyniak M (2018) Reduced fecundity and cellular changes in Acheta domesticus after multigenerational exposure to graphene oxide nanoparticles in food. Sci Total Environ 635:947–955

    Article  Google Scholar 

  • Esposito MC, Corsi I, Russo GL, Punta C, Tosti E, Gallo A (2021) The era of nanomaterials: a safe solution or a risk for marine environmental pollution? Biomol Ther 11(3):441

    CAS  Google Scholar 

  • Giese B, Klaessig F, Park B, Kaegi R, Steinfeldt M, Wigger H, von Gleich A, Gottschalk F (2018) Risks, release and concentrations of engineered nanomaterial in the environment. Sci Rep 8(1):1–18

    Article  CAS  Google Scholar 

  • Giubilato E, Cazzagon V, Amorim MJ, Blosi M, Bouillard J, Bouwmeester H, Costa AL, Fadeel B, Fernandes TF, Fito C (2020) Risk management framework for nano-biomaterials used in medical devices and advanced therapy medicinal products. Materials 13(20):4532

    Article  CAS  Google Scholar 

  • Glisovic S, Pesic D, Stojiljkovic E, Golubovic T, Krstic D, Prascevic M, Jankovic Z (2017) Emerging technologies and safety concerns: a condensed review of environmental life cycle risks in the nano-world. Int J Environ Sci Technol 14(10):2301–2320

    Article  Google Scholar 

  • Grieger K, Hjorth R, Carpenter AW, Klaessig F, Lefevre E, Gunsch C, Soratana K, Landis AE, Wickson F, Hristozov D, Linkov I (2019) Sustainable environmental remediation using NZVI by managing benefit-risk trade-offs. In: Phenrat T, Lowry G (eds) Nanoscale zerovalent iron particles for environmental restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-95340-3_15

    Chapter  Google Scholar 

  • Griffin S, Masood MI, Nasim MJ, Sarfraz M, Ebokaiwe AP, Schäfer K-H, Keck CM, Jacob C (2017) Natural nanoparticles: a particular matter inspired by nature. Antioxidants (Basel) 7(3):1–21

    CAS  Google Scholar 

  • Gupta R, Xie H (2018) Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 37:209–230

    Article  Google Scholar 

  • Hassan AA, Mansour MK, El Ahl RMHS, El Hamaky AMA, Oraby NH (2020) Toxic and beneficial effects of carbon nanomaterials on human and animal health. Carbon nanomaterials for Agri-food and environmental applications. Elsevier, pp 535–555

    Google Scholar 

  • Hempt C, Kaiser JP, Scholder O, Buerki-Thurnherr T, Hofmann H, Rippl A, Schuster TB, Wick P, Hirsch C (2020) The impact of synthetic amorphous silica (E 551) on differentiated Caco-2 cells, a model for the human intestinal epithelium. Toxicol In Vitro 67:104903. https://doi.org/10.1016/j.tiv.2020.104903

    Article  CAS  Google Scholar 

  • Ho K, Teoh Y, Teow Y, Mohammad A (2021) Life cycle assessment (LCA) of electrically-enhanced POME filtration: environmental impacts of conductive-membrane formulation and process operating parameters. J Environ Manag 277:111434

    Article  CAS  Google Scholar 

  • Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X (2019) Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci 75:40–53

    Article  CAS  Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58(2):297–317

    Article  CAS  Google Scholar 

  • Jiménez-Saborido OE (2021) Estudio de la influencia de las nanopartículas en la evaluación del riesgo higiénico. Universidad de Jaén, Escuela Politécnica superior de Linares, Linares, España

    Google Scholar 

  • Jogaiah S, Paidi MK, Venugopal K, Geetha N, Mujtaba M, Udikeri SS, Govarthanan M (2021) Phytotoxicological effects of engineered nanoparticles: an emerging nanotoxicology. Sci Total Environ 801:149809

    Article  CAS  Google Scholar 

  • Kabir E, Kumar V, Kim K-H, Yip ACK, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manag 225:261–271

    Article  CAS  Google Scholar 

  • Kermenidou M, Balcells L, Martinez-Boubeta C, Chatziavramidis A, Konstantinidis I, Samaras T, Sarigiannis D, Simeonidis K (2021) Magnetic nanoparticles: an indicator of health risks related to anthropogenic airborne particulate matter. Environ Pollut 271:116309

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  • Khan AU, Xu Z, Qian X, Hong A, Tang Q, Zeng T, Kah M, Li L (2021) Transformations of Ag2S nanoparticles in simulated human gastrointestinal tract: impacts of the degree and origin of sulfidation. J Hazard Mater 401:123406

    Article  CAS  Google Scholar 

  • Kuroda C, Ajima K, Ueda K, Sobajima A, Yoshida K, Kamanaka T, Sasaki J, Ishida H, Haniu H, Okamoto M, Aoki K, Kato H, Saito N (2021) Isolated lymphatic vessel lumen perfusion system for assessing nanomaterial movements and nanomaterial-induced responses in lymphatic vessels. Nano Today 36:101018

    Article  CAS  Google Scholar 

  • Lead JR, Batley GE, Alvarez PJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K (2018) Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review. Environ Toxicol Chem 37(8):2029–2063

    Article  CAS  Google Scholar 

  • Lee CH, Tiwari B, Zhang DY, Yap YK (2017) Water purification: oil-water separation by nanotechnology and environmental concerns. Environ Sci Nano 4(3):514–525

    Article  CAS  Google Scholar 

  • Li J, Song Y, Vogt RD, Liu Y, Luo J, Li T (2020) Bioavailability and cytotoxicity of cerium- (iv), copper- (II), and zinc oxide nanoparticles to human intestinal and liver cells through food. Sci Total Environ 702:134700. https://doi.org/10.1016/j.scitotenv.2019.134700

    Article  CAS  Google Scholar 

  • Liu B, Du H, Fan J, Huang B, Zhou K, Gong J (2021) The gap between public perceptions and monitoring indicators of environmental quality in Beijing. J Environ Manage 277:111414

    Article  Google Scholar 

  • Lojk J, Repas J, Veranič P, Bregar VB, Pavlin M (2020) Toxicity mechanisms of selected engineered nanoparticles on human neural cells in vitro. Toxicology 432:152364. https://doi.org/10.1016/j.tox.2020.152364

    Article  CAS  Google Scholar 

  • Malakar A, Kanel SR, Ray C, Snow DD, Nadagouda MN (2021) Nanomaterials in the environment, human exposure pathway, and health effects: a review. Sci Total Environ 759:143470

    Article  CAS  Google Scholar 

  • Martinello K, Hower JC, Pinto D, Schnorr CE, Dotto GL, Oliveira MLS, Claudete G (2021) Ramos. Artisanal ceramic factories using wood combustion: a nanoparticles and human health study. Geosci Front 2021:101151. https://doi.org/10.1016/j.gsf.2021.101151

    Article  CAS  Google Scholar 

  • Martinez G, Merinero M, Perez-Aranda M, Perez-Soriano EM, Ortiz T, Villamor E, Begines B, Alcudia A (2021) Environmental impact of Nanoparticles’ application as an emerging technology: a review. Materials 14(7):1710

    CAS  Google Scholar 

  • Mazari SA, Ali E, Abro R, Khan FSA, Ahmed I, Ahmed M, Nizamuddin S, Siddiqui TH, Hossain N, Mubarak NM, Shah A (2021) Nanomaterials: applications, waste-handling, environmental toxicities, and future challenges—a review. J Environ Chem Eng 9:105028

    Article  CAS  Google Scholar 

  • McNulty D, Geaney H, Ramasse Q, O'Dwyer C (2020) Long cycle life, highly ordered SnO2/GeO2 nanocomposite inverse opal anode materials for Li-ion batteries. Adv Funct Mater 30(51):2005073

    Article  CAS  Google Scholar 

  • Mo F, Wang MS, Li HB, Li YH, Li Z, Deng NC, Chai R, Wang HX (2021) Biological effects of silver ions to Trifolium pratense L. revealed by analysis of biochemical indexes, morphological alteration and genetic damage possibility with special reference to hormesis (z.star;). Environ Exp Bot 186:104458

    Google Scholar 

  • Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci Nano 5(3):623–658

    Article  CAS  Google Scholar 

  • Mukherjee A, Maity A, Pramanik P, Shubha K, Joshi DC, Wani SH (2019) Public perception about use of nanotechnology in agriculture. Advances in phytonanotechnology. Elsevier, pp 405–418

    Google Scholar 

  • Nasrollahzadeh M, Sajadi SM (2019) Risks of nanotechnology to human life. An introduction to green nanotechnology, pp 323–336. https://doi.org/10.1016/b978-0-12-813586-0.00007-9

  • Nho R (2020) Pathological effects of nano-sized particles on the respiratory system. Nanomedicine 29:102242

    Article  CAS  Google Scholar 

  • Ogunkunle CO, Odulaja DA, Akande FO, Varun M, Vishwakarma V, Fatoba PO (2020) Cadmium toxicity in cowpea plant: effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. J Biotechnol 310:54–61. https://doi.org/10.1016/j.jbiotec.2020.01.009

    Article  CAS  Google Scholar 

  • Pavlicek A, Part F, Rose G, Praetorius A, Miernicki M, Gazsó A, Huber-Humer M (2020) A European nano-registry as a reliable database for quantitative risk assessment of nanomaterials? A comparison of national approaches. NanoImpact 21:100276

    Article  Google Scholar 

  • Pérez-Hernández H, Fernández-Luqueño F, Huerta-Lwanga E, Mendoza-Vega J, Álvarez-Solís JD (2020) Effect of engineered nanoparticles on soil biota: do they improve the soil quality and crop production or jeopardize them? Land Degrad Dev 31:2213–2230

    Article  Google Scholar 

  • Perez-Hernandez H, Perez-Moreno A, Sarabia-Castillo CR, Garcia-Mayagoitia S, Medina-Perez G, Lopez-Valdez F, Campos-Montiel RG, Jayanta-Kumar P, Fernandez-Luqueno F (2021) Ecological drawbacks of nanomaterials produced on an industrial scale: collateral effect on human and environmental health. Water Air Soil Pollut 232(10):435

    Article  CAS  Google Scholar 

  • Pinheiro SDK, Chaves MD, Miguel TBAR, Barros FCD, Farias CP, Ferreira OP, Miguel ED (2020) Toxic effects of silver nanoparticles on the germination and root development of lettuce (Lactuca sativa). Aust J Bot 68(2):127–136

    Article  Google Scholar 

  • Raja IS, Lee JH, Hong SW, Shin D-M, Lee JH, Han D-W (2021) A critical review on genotoxicity potential of low dimensional nanomaterials. J Hazard Mater 409:124915

    Article  CAS  Google Scholar 

  • Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, Duplii N, Fedorenko G, Dvadnenko K, Ghazaryan K (2018) Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci Total Environ 645:1103–1113

    Article  CAS  Google Scholar 

  • Rajput V, Minkina T, Mazarij M, Shende S, Sushkova S, Mandzhieva S, Burachevskaya M, Chaplygin V, Singh A, Jatav H (2020a) Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann Agric Sci 65:137–143

    Article  Google Scholar 

  • Rajput V, Minkina T, Mazarji M, Shende S, Sushkova S, Mandzhieva S, Burachevskaya M, Chaplygin V, Singh A, Jatav H (2020b) Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann Agric Sci 65(2):137–143

    Article  Google Scholar 

  • Rana K, Verma Y, Rana SVS (2021) Possible mechanisms of liver injury induced by cadmium sulfide nanoparticles in rats. Biol Trace Elem Res 199:216–226

    Article  Google Scholar 

  • Saleem H, Zaidi SJ (2020a) Recent developments in the application of nanomaterials in agroecosystems. Nano 10(12):2411

    CAS  Google Scholar 

  • Saleem H, Zaidi SJ (2020b) Developments in the application of nanomaterials for water treatment and their impact on the environment. Nano 10(9):1764. https://doi.org/10.3390/nano10091764

    Article  CAS  Google Scholar 

  • Saleh TA (2020) Trends in the sample preparation and analysis of nanomaterials as environmental contaminants. Trends Environ Anal Chem 28:e00101

    Article  CAS  Google Scholar 

  • Salieri B, Turner DA, Nowack B, Hischier R (2018) Life cycle assessment of manufactured nanomaterials: where are we? NanoImpact 10:108–120

    Article  Google Scholar 

  • Samer M, Hijazi O, Abdelsalam E, El-Hussein A, Attia Y, Yacoub I, Bernhardt H (2021) Life cycle assessment of using laser treatment and nanomaterials to produce biogas through anaerobic digestion of slurry. In: Environment, development and sustainability, vol 23, pp 1–14

    Google Scholar 

  • Schulte PA, Leso V, Niang M, Iavicoli I (2019) Current state of knowledge on the health effects of engineered nanomaterials in workers: a systematic review of human studies and epidemiological investigations. Scand J Work Environ Health 45(3):217

    Article  CAS  Google Scholar 

  • Seleiman MF, Almutairi KF, Alotaibi M, Shami A, Alhammad BA, Battaglia ML (2021) Nano-fertilization as an emerging fertilization technique: why can modern agriculture benefit from its use? Plan Theory 10:2

    CAS  Google Scholar 

  • Sendao R, de Yuso MVM, Algarra M, da Silva JCE, da Silva LP (2020) Comparative life cycle assessment of bottom-up synthesis routes for carbon dots derived from citric acid and urea. J Clean Prod 254:120080

    Article  CAS  Google Scholar 

  • Shahid NM, Dumat C, Khalid S, Rabbani F, Farrooq ABU, Amjad M, Abbas G, Naizi NK (2019) Foliar uptake of arsenic nanoparticles by spinach: an assessment of physiological and human health risk implications. Environ Sci Pollut Res 26:20121–22013

    Article  Google Scholar 

  • Sharan A, Nara S (2019) Phytotoxic properties of zinc and cobalt oxide nanoparticles in algaes. In: Nanomaterials in plants, algae and microorganisms, pp 1–22

    Google Scholar 

  • Shweta, Shweta, Tripathi DK, Chauhan DK, Peralta-Videa JR (2018) Availability and risk assessment of nanoparticles in living systems. In: Nanomaterials in plants, algae, and microorganisms, pp 1–31

    Google Scholar 

  • Singh N, Bhuker A, Jeevanadam J (2021) Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops. Naunyn Schmiedeberg’s Arch Pharmacol 394:1067. https://doi.org/10.1007/s00210-021-02057-7

    Article  CAS  Google Scholar 

  • Souza MR, Mazaro-Costa R, Rocha TL (2021) Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. Sci Total Environ 769:144354

    Article  CAS  Google Scholar 

  • Sribna VO, Voznesenska TY, Blashkiv TV (2019) The influence of zero-valent iron nanoparticles on oocytes and surrounding follicular cells in mice. Appl Nanosci 9:1395. https://doi.org/10.1007/s13204-019-00978-7

    Article  CAS  Google Scholar 

  • Subramaniam VD, Murugesan R, Pathak S (2020) Assessment of the cytotoxicity of cerium, tin, aluminum, and zinc oxide nanoparticles on human cells. J Nanopart Res 22:373. https://doi.org/10.1007/s11051-020-05102-3

    Article  CAS  Google Scholar 

  • Tahaei Gilan SS, Yahya Raya D, Mustafa TA, Aziz FM, Shahpasand K, Akhtari K, Salihi A, Abou-Zied OK, Falahati M (2019) α-Synuclein interaction with zero-valent iron nanoparticles accelerates structural rearrangement into amyloid-susceptible structure with increased cytotoxic tendency. Int J Nanomedicine 14:4637–4648. https://doi.org/10.2147/IJN.S212387

    Article  Google Scholar 

  • Temizel-Sekeryan S, Hicks AL (2020a) Emerging investigator series: calculating size-and coating-dependent effect factors for silver nanoparticles to inform characterization factor development for usage in life cycle assessment. Environ Sci Nano 7(9):2436–2453

    Article  CAS  Google Scholar 

  • Temizel-Sekeryan S, Hicks AL (2020b) Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment. Resour Conserv Recycl 156:104676

    Article  Google Scholar 

  • Thiagarajan V, Alex SA, Seenivasan R, Chandrasekaran N, Mukherjee A (2021) Interactive effects of micro/nanoplastics and nanomaterials/pharmaceuticals: their ecotoxicological consequences in the aquatic systems. Aquat Toxicol 232:105747

    Article  CAS  Google Scholar 

  • Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, Seabra AB (2020) Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater 390:121974

    Article  CAS  Google Scholar 

  • Valle-García JD, Sarabia-Castillo CR, Pérez-Hernández H, Torres-Gómez AP, Pérez-Moreno A, Fernández-Luqueño F (2021) Influence of nanoparticles on the physical, chemical and biological properties of soils. In: Amrane A, Dinesh M, Tuan AN, Aymen A, Ghulam Y (eds) Nanomaterials for soil remediation. Elsevier, pp 151–182

    Google Scholar 

  • Vardakas P, Skaperda Z, Tekos F, Trompeta A-F, Tsatsakis A, Charitidis CA, Kouretas D (2021) An integrated approach for assessing the in vitro and in vivo redox-related effects of nanomaterials. Environ Res 197:111083

    Article  CAS  Google Scholar 

  • Villamor Sancho EJ (2020) Impacto medioambiental del uso de nanopartículas. Trabajo fin de grado de carácter bibliográfico Universidad de Sevilla, Sevilla, España

    Google Scholar 

  • Visentin C, Da Silva Trentin AW, Braun AB, Thomé A (2021) Life cycle sustainability assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation. Environ Pollut 268:115915

    Article  CAS  Google Scholar 

  • Wigger H, Kägi R, Wiesner M, Nowack B (2020) Exposure and possible risks of engineered nanomaterials in the environment—current knowledge and directions for the future. Rev Geophys 58(4):e2020RG000710

    Article  Google Scholar 

  • Wu J, Wang GY, Vijver MG, Bosker T, Peijnenburg WJGM (2020) Foliar versus root exposure of AgNPs to lettuce: phytotoxicity, antioxidant responses and internal translocation. Environ Pollut 261:114117

    Article  CAS  Google Scholar 

  • Wu F, Sokolov EP, Dellwig O, Sokolova IM (2021) Season-dependent effects of ZnO nanoparticles and elevated temperature on bioenergetics of the blue mussel Mytilus edulis. Chemosphere 263:127780

    Article  CAS  Google Scholar 

  • Xiao B, Zhang Y, Wang X, Chen M, Sun B, Zhang T, Zhu L (2019) Occurrence and trophic transfer of nanoparticulate Ag and Ti in the natural aquatic food web of Taihu Lake, China. Environ Sci Nano 6:3431

    Article  CAS  Google Scholar 

  • Xu Z, Lu J, Zheng X, Chen B, Luo Y, Tahir MN, Huang B, Xia X, Pan X (2020) A critical review on the applications and potential risks of emerging MoS nanomaterials. J Hazard Mater 399:123057

    Article  CAS  Google Scholar 

  • Yang J, Liu J, Wang P, Sun J, Lv X, Diao Y (2021) Toxic effect of titanium dioxide nanoparticles on corneas in vitro and in vivo. Aging 13(4):5020–5033

    Article  CAS  Google Scholar 

  • Yuan X, Zhang X, Sun L, Wei Y, Wei X (2019) Cellular toxicity and immunological effects of carbon-based nanomaterials. Part Fibre Toxicol 16(1):1–27

    Article  CAS  Google Scholar 

  • Zhao J, Lin M, Wang Z, Cao X, Xing B (2020) Engineered nanomaterials in the environment: are they safe? Crit Rev Environ Sci Technol 51:1443. https://doi.org/10.1080/10643389.2020.1764279

    Article  Google Scholar 

  • Zhou X, Wang Y, Gong C, Liu B, Wei G (2020) Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: a comprehensive review. Chem Eng J 402:126189

    Article  CAS  Google Scholar 

  • Zhu Y, Wu J, Chen M, Liu X, Xiong Y, Wang Y, Feng T, Kang S, Wang X (2019) Recent advances in the biotoxicity of metal oxide nanoparticles: impacts on plants, animals and microorganisms. Chemosphere 237:124403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was founded by the projects “Ciencia Básica SEP-CONACyT-151881,” “FONCYT-COAHUILA COAH-2019-C13-C006,” and “FONCYT-COAHUILA COAH-2021-C15-C095,” by the Sustainability of Natural Resources and Energy Program (Cinvestav-Saltillo), and by Cinvestav Zacatenco. JK Patra acknowledges the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1G1A1004667) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Mayagoitia, S., Torres-Gómez, A., Pérez-Hernández, H., Patra, J.K., Fernández-Luqueño, F. (2023). Collateral Effects of Nanopollution on Human and Environmental Health. In: Fernandez-Luqueno, F., Patra, J.K. (eds) Agricultural and Environmental Nanotechnology. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-5454-2_23

Download citation

Publish with us

Policies and ethics