Skip to main content

Nanoparticles and Their Role in Environmental Decontamination Technologies

  • Chapter
  • First Online:
Nanomaterials for Advanced Technologies
  • 276 Accesses

Abstract

Environmental contamination is a severe problem for both developing and developed nations. Due to anthropogenic activities, the pollution load gets accumulated in the environment. Both organic and inorganic contaminants are harmful to the living being. Their incidence and persistence have increased substantially in recent years. For the remediation of impurities from diverse ecological media such as water, soil, and air, ecological decontamination technologies primarily rely on numerous technologies such as adsorption, absorption, chemical reactions, filtration, and photocatalysis. Nanotechnology has recently gained popularity in water, soil, and air decontamination. Detection, decontamination, and pollution preclusion are the primary elements of nanoparticle-based remediation. Nanotechnology has been extensively used in numerous fields, including environmental remediation. This chapter briefly explains the recent advancement of nanotechnology and nanomaterials in environmental decontamination technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A.A. Adesina, Industrial exploitation of photocatalysis: progress, perspectives and prospects. Catal. Surv. Asia 8(4), 265–273 (2004)

    Article  MathSciNet  Google Scholar 

  • M.P. Ajith, M.K. James, Impact of Chamravattam regulator cum bridge on Bharathapuzha river and adjacent areas. Indian J. Econ. Dev. 4(1), 2320–9828 (2016)

    Google Scholar 

  • M.P. Ajith, M. Aswathi, E. Priyadarshini, P. Rajamani, Recent innovations of nanotechnology in water treatment: a comprehensive review. Bioresour. Technol. 126000 (2021)

    Google Scholar 

  • M.P. Ajith, E. Priyadarshini, P. Rajamani, Effective and selective removal of heavy metals from industrial effluents using sustainable Si–CD conjugate based column chromatography. Bioresour. Technol. 314, 123786 (2020)

    Google Scholar 

  • X. An, C.Y. Jimmy, Graphene-based photocatalytic composites. Rsc Adv. 1(8), 1426–1434 (2011)

    Article  ADS  Google Scholar 

  • A. Baglieri, M. Nègre, F. Trotta, P. Bracco, M. Gennari, Organo-clays and nanosponges for acquifer bioremediation: adsorption and degradation of triclopyr. J. Environ. Sci. Health B 48(9), 784–792 (2013)

    Article  Google Scholar 

  • A. Bianco, G. Iardino, C. Bertarelli, L. Miozzo, A. Papagni, G. Zerbi, Modification of surface properties of electrospun polyamide nanofibers by means of a perfluorinated acridine. Appl. Surf. Sci. 253(20), 8360–8364 (2007)

    Article  ADS  Google Scholar 

  • M.L. Campbell, F.D. Guerra, J. Dhulekar, F. Alexis, D.C. Whitehead, Target‐specific capture of environmentally relevant gaseous aldehydes and carboxylic acids with functional nanoparticles. Chem. Euro. J. 21(42), 14834–14842 (2015)

    Google Scholar 

  • M. Cho, H. Chung, W. Choi, J. Yoon, Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl. Environ. Microbiol. 71(1), 270–275 (2005)

    Article  ADS  Google Scholar 

  • S. Chowdhury, R. Balasubramanian, Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Coll. Interface. Sci. 204, 35–56 (2014)

    Article  Google Scholar 

  • R. Das, S. Giri, A.L. King Abia, B. Dhonge, A. Maity, Removal of noble metal ions (Ag+) by mercapto group-containing polypyrrole matrix and reusability of its waste material in environmental applications. ACS Sustain. Chem. Eng. 5(3), 2711–2724 (2017)

    Google Scholar 

  • S. Das, B. Sen, N. Debnath, Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ. Sci. Pollut. Res. 22(23), 18333–18344 (2015)

    Article  Google Scholar 

  • S.K. Das, M.M.R. Khan, T. Parandhaman, F. Laffir, A.K. Guha, G. Sekaran, A.B. Mandal, Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale 5(12), 5549–5560 (2013)

    Article  ADS  Google Scholar 

  • M. Dhanasekar, V. Jenefer, R.B. Nambiar, S.G. Babu, S.P. Selvam, B. Neppolian, S.V. Bhat, Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Mater. Res. Bull. 97, 238–243 (2018)

    Article  Google Scholar 

  • M.S. Diallo, S. Christie, P. Swaminathan, J.H. Johnson, W.A. Goddard, Dendrimer enhanced ultrafiltration. 1. Recovery of Cu (II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ. Sci. Technol. 39(5), 1366–1377 (2005)

    Google Scholar 

  • S.E. Ebrahim, A.H. Sulaymon, H. Saad Alhares, Competitive removal of Cu2+, Cd2+, Zn2+, and Ni2+ ions onto iron oxide nanoparticles from wastewater. Desalin. Water Treat. 57(44), 20915–20929 (2016)

    Google Scholar 

  • K.K. Gangu, S. Maddila, S.B. Jonnalagadda, A review on novel composites of MWCNTs mediated semiconducting materials as photocatalysts in water treatment. Sci. Total Environ. 646, 1398–1412 (2019)

    Article  ADS  Google Scholar 

  • I. Gehrke, A. Geiser, A. Somborn-Schulz, Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl. 8, 1 (2015)

    Google Scholar 

  • X. Guan, J. Du, X. Meng, Y. Sun, B. Sun, Q. Hu, Application of titanium dioxide in arsenic removal from water: a review. J. Hazard. Mater. 215, 1–16 (2012)

    Article  Google Scholar 

  • F.D. Guerra, M.L. Campbell, D.C. Whitehead, F. Alexis, Tunable properties of functional nanoparticles for efficient capture of VOCs. ChemistrySelect 2(31), 9889–9894 (2017)

    Article  Google Scholar 

  • M. Guo, X. Weng, T. Wang, Z. Chen, Biosynthesized iron-based nanoparticles used as a heterogeneous catalyst for the removal of 2, 4-dichlorophenol. Sep. Purif. Technol. 175, 222–228 (2017)

    Article  Google Scholar 

  • A. Gupta, S. Silver, Silver as a biocide: will resistance become a problem? Nat. Biotechnol. 16(10), 888–888 (1998)

    Article  Google Scholar 

  • S. Homaeigohar, M. Elbahri, Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials 7(2), 1017–1045 (2014)

    Article  ADS  Google Scholar 

  • Z. Hooshyar, G. RezanejadeBardajee, Y. Ghayeb, Sonication enhanced removal of nickel and cobalt ions from polluted water using an iron-based sorbent. J. Chem. (2013)

    Google Scholar 

  • L. Huang, M. Zhang, C. Li, G. Shi, Graphene-based membranes for molecular separation. J. Phys. Chem. Lett. 6(14), 2806–2815 (2015)

    Article  Google Scholar 

  • B. Karn, T. Kuiken, M. Otto, Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ. Health Perspect. 117(12), 1813–1831 (2009)

    Article  Google Scholar 

  • N.A. Khan, S.U. Khan, S. Ahmed, I.H. Farooqi, A. Dhingra, A. Hussain, F. Changani, Applications of nanotechnology in water and wastewater treatment: a review. Asian J. Water Environ. Pollut. 16(4), 81–86 (2019)

    Article  Google Scholar 

  • B.I. Kharisov, H.R. Dias, O.V. Kharissova, Nanotechnology-based remediation of petroleum impurities from water. J. Petrol. Sci. Eng. 122, 705–718 (2014)

    Article  Google Scholar 

  • B.I. Kharisov, H.R. Dias, O.V. Kharissova, V.M. Jiménez-Pérez, B.O. Perez, B.M. Flores, Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv. 2(25), 9325–9358 (2012)

    Article  ADS  Google Scholar 

  • M.M. Khin, A.S. Nair, V.J. Babu, R. Murugan, S. Ramakrishna, A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109 (2012)

    Article  Google Scholar 

  • N. Kumar, A. Balamurugan, P. Balakrishnan, K. Vishwakarma, K. Shanmugam, biogenic nanomaterials: synthesis and its applications for sustainable development. Biogenic Nano-Particles and their Use in Agro-ecosystems, 99–132 (2020). https://doi.org/10.1007/978-981-15-2985-6_7

  • A.P. Lemes, L. Cordi, A. Santos, N. Durán, Bacterial remediation from effluent containing multi-walled carbon nanotubes. J. Phys. Conf. Ser. 304(1), 012023 (2011)

    Google Scholar 

  • Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42(18), 4591–4602 (2008)

    Article  Google Scholar 

  • X.Q. Li, W.X. Zhang, Iron nanoparticles: the core−shell structure and unique properties for Ni (II) sequestration. Langmuir 22(10), 4638–4642 (2006)

    Article  Google Scholar 

  • G.P. Lithoxoos, A. Labropoulos, L.D. Peristeras, N. Kanellopoulos, J. Samios, I.G. Economou, Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: a combined experimental and Monte Carlo molecular simulation study. J. Supercrit. Fluids 55(2), 510–523 (2010)

    Article  Google Scholar 

  • G. Liu, W. Jin, N. Xu, Two-dimensional-material membranes: a new family of high-performance separation membranes. AngewandteChemie Int. Ed. 55(43), 13384–13397 (2016)

    Article  Google Scholar 

  • X. Liu, L. Pan, T. Lv, T. Lu, G. Zhu, Z. Sun, C. Sun, Microwave-assisted synthesis of ZnO–graphene composite for photocatalytic reduction of Cr (VI). Catal. Sci. Technol. 1(7), 1189–1193 (2011)

    Article  Google Scholar 

  • M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42(16), 5843–5859 (2008)

    Article  ADS  Google Scholar 

  • A. MP, S. Pardhiya, P. Rajamani, Carbon dots: an excellent fluorescent probe for contaminant sensing and remediation. Small 2105579 (2022).https://doi.org/10.1002/SMLL.202105579

  • A.B.D. Nandiyanto, G.C.S. Girsang, R. Maryanti, R. Ragadhita, S. Anggraeni, F.M. Fauzi, P. Sakinah, A.P. Astuti, D. Usdiyana, M. Fiandini, M.W. Dewi, Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste. Commun. Sci. Technol. 5(1), 31–39 (2020)

    Article  Google Scholar 

  • M.C. Ncibi, M. Sillanpää, Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J. Hazard. Mater. 298, 102–110 (2015). https://doi.org/10.1016/J.JHAZMAT.2015.05.025

  • L.Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308, 15–33 (2013)

    Article  Google Scholar 

  • S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007)

    Article  ADS  Google Scholar 

  • J.Y. Park, I.H. Lee, Photocatalytic degradation of 2-chlorophenol using Ag-doped TiO2 nanofibers and a near-UV light-emitting diode system. J. Nanomater. (2014)

    Google Scholar 

  • S.S. Poguberović, D.M. Krčmar, S.P. Maletić, Z. Kónya, D.D.T. Pilipović, D.V. Kerkez, S.D. Rončević, Removal of As (III) and Cr (VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol. Eng. 90, 42–49 (2016)

    Article  Google Scholar 

  • M. Qasim, N. Udomluck, J. Chang, H. Park, K. Kim, Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. Int. J. Nanomed. 13, 235–249 (2018). https://doi.org/10.2147/IJN.S153485

    Article  Google Scholar 

  • S. Rasalingam, R. Peng, R.T. Koodali, Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials. J. Nanomater. (2014)

    Google Scholar 

  • X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170(2–3), 395–410 (2011)

    Article  Google Scholar 

  • V. Rocher, J.M. Siaugue, V. Cabuil, A. Bee, Removal of organic dyes by magnetic alginate beads. Water Res. 42(4–5), 1290–1298 (2008)

    Article  Google Scholar 

  • C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, A. Bhatnagar, Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 306, 1116–1137 (2016)

    Article  Google Scholar 

  • K.J. Shah, T. Imae, Selective gas capture ability of gas-adsorbent-incorporated cellulose nanofiber films. Biomacromolecules 17(5), 1653–1661 (2016)

    Article  Google Scholar 

  • S. Shi, W. Wang, L. Liu, S. Wu, Y. Wei, W. Li, Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J. Food Eng. 118(1), 125–131 (2013)

    Article  Google Scholar 

  • S. Sundarrajan, S. Ramakrishna, Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J. Mater. Sci. 42(20), 8400–8407 (2007)

    Article  ADS  Google Scholar 

  • Y.H. Tee, E. Grulke, D. Bhattacharyya, Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind. Eng. Chem. Res. 44(18), 7062–7070 (2005)

    Article  Google Scholar 

  • J. Theron, J.A. Walker, T.E. Cloete, Nanotechnology and water treatment: applications and emerging opportunities. Crit. Rev. Microbiol. 34(1), 43–69 (2008)

    Article  Google Scholar 

  • P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental cleanup. Nano Today 1(2), 44–48 (2006)

    Article  Google Scholar 

  • S. Wang, H. Sun, H.M. Ang, M.O. Tadé, Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 226, 336–347 (2013)

    Article  Google Scholar 

  • L. Wu, S.M. Ritchie, Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere 63(2), 285–292 (2006)

    Article  ADS  Google Scholar 

  • M.Q. Yang, N. Zhang, Y.J. Xu, Synthesis of fullerene–, carbon nanotube–, and graphene–TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Appl. Mater. Interfaces. 5(3), 1156–1164 (2013)

    Article  Google Scholar 

  • Y. Ying, Y. Yang, W. Ying, X. Peng, Two-dimensional materials for novel liquid separation membranes. Nanotechnology 27(33), 332001 (2016)

    Google Scholar 

  • Y. Ying, W. Ying, Q. Li, D. Meng, G. Ren, R. Yan, X. Peng, Recent advances of nanomaterial-based membrane for water purification. Appl. Mater. Today 7, 144–158 (2017)

    Article  Google Scholar 

  • L. Zan, W. Fa, T. Peng, Z.K. Gong, Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus. J. Photochem. Photobiol. B 86(2), 165–169 (2007)

    Article  Google Scholar 

  • N. Zhang, M.Q. Yang, Z.R. Tang, Y.J. Xu, CdS–graphene nanocomposites as visible light photocatalyst for redox reactions in water: a green route for selective transformation and environmental remediation. J. Catal. 303, 60–69 (2013)

    Article  Google Scholar 

  • Y. Zhang, Z.R. Tang, X. Fu, Y.J. Xu, TiO2− graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2− graphene truly different from other TiO2− carbon composite materials? ACS Nano 4(12), 7303–7314 (2010)

    Article  Google Scholar 

  • X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang, Q. Zhang, Polymer-supported nanocomposites for environmental application: a review. Chem. Eng. J. 170(2–3), 381–394 (2011)

    Article  Google Scholar 

  • Z. Zheng, S. Yuan, Y. Liu, X. Lu, J. Wan, X. Wu, J. Chen, Reductive dechlorination of hexachlorobenzene by Cu/Fe bimetal in the presence of nonionic surfactant. J. Hazard. Mater. 170(2–3), 895–901 (2009)

    Article  Google Scholar 

  • N. Zhu, H. Luan, S. Yuan, J. Chen, X. Wu, L. Wang, Effective dechlorination of HCB by nanoscale Cu/Fe particles. J. Hazard. Mater. 176(1–3), 1101–1105 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The Department of Science and Technology, New Delhi, India, provided funding to AMP through the INSPIRE Senior Research Fellowship which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajamani Paulraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ajith, M.P., Paulraj, R. (2022). Nanoparticles and Their Role in Environmental Decontamination Technologies. In: Katiyar, J.K., Panwar, V., Ahlawat, N. (eds) Nanomaterials for Advanced Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-1384-6_7

Download citation

Publish with us

Policies and ethics