Skip to main content

Nanoagriculture: Advantages and Drawbacks

  • Chapter
  • First Online:
Agricultural and Environmental Nanotechnology

Abstract

In present days, nanotechniques have achieved great attentions because of its various roles in many fields such as energy storage devices, clinical drugs, catalytic process, and materials. Several reports also revealed that nanotechnology would have a major and prolonged effect on the agriculture sector. Agriculture is an ecologically costly technique. An increasing number of peoples and unfavorable climatic situations increase the requirement of using insecticides and chemical fertilizers. However, they tend to have high adverse effects as they release toxic molecules in high quantity in the environment. The main solution of this issue is the formation of nanomaterials-based fertilizers and pesticides. Owing to small size, nanomaterials discharge desirable substances. Thus, these can also help in decreasing the wastes. By using nanotechniques, agriculture is developing fast. There are several roles of nanotechnology in agriculture like rise in production rate by using nanofertilizers and nanopesticides, enhancement of the plant growth by employing nanomaterials (like carbon nanotubes, titanium dioxide, and silicon dioxide), increase in quality of the soil by using hydrogels and nanofertilizers, and give better survey by employing wireless nanosensor tools. Moreover, these techniques help to control the discharge of toxic substances from agrochemicals (like fertilizers and pesticides) and deliver many needed macromolecules on desired sites to improve the disease resistance of plants. However, many issues have been raised about the efficient adverse effects of nanoparticles on the environment as well as on biological systems, like the generation of toxic free-radicals that lead to lipid peroxidation and damage of DNA by employing these more potential techniques. This has led to an increase in the number of unemployed in the area of farming due to the reduced requirement of human workers with these better operative techniques. Under these scenarios, there is need to predict the adverse effect of these nanoparticles in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-elsalam KA (2013) Fungal genomics & biology nanoplatforms for plant pathogenic fungi management. Fungal Genom Biol 2:e107. https://doi.org/10.4172/2165-8056.1000e107

    Article  Google Scholar 

  • Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energy. https://doi.org/10.1016/j.renene.2015.10.053

  • Abigail EA, Chidambaram R (2017) Nanotechnology in herbicide resistance. Nanostruct Mater. https://doi.org/10.5772/intechopen.68355

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. J Mol Med. https://doi.org/10.1007/s001090000086

  • Alvarado MA, Guzmán ON, Solís NM, Baudrit VJ, Quimica ED (2017) Recycling and elimination of wastes obtained from agriculture by using nanotechnology: nanosensors. Int J Biosen Bioelectron. https://doi.org/10.15406/ijbsbe.2017.03.00084

  • Ameta SK, Rai AK, Hiran D, Ameta R, Ameta SC (2020) Use of nanomaterials in food science. In: Ghorbanpour M, Bhargava P, Varma A, Choudhary D (eds) Biogenic nano-particles and their use in agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_24

    Chapter  Google Scholar 

  • Ammar AS (2018) Nanotechnologies associated to floral resources in agri-food sector. Acta Agron. https://doi.org/10.15446/acag.v67n1.62011

  • Amooaghaie R, Norouzi M, Saeri M (2017) Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany. https://doi.org/10.1139/cjb-2016-0194

  • Andrade LL, do Espirito Santo Pereira A, Fernandes Fraceto L, Bueno dos Reis Martinez C (2019) Can atrazine loaded nanocapsules reduce the toxic effects of this herbicide on the fish Prochilodus lineatus? A multibiomarker approach. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.01.380

  • Antisari LV, Laudicina VA, Gatti A, Carbone S, Badalucco L, Vianello G (2015) Soil microbial biomass carbon and fatty acid composition of earthworm Lumbricus rubellus after exposure to engineered nanoparticles. Biol Fertil Soils. https://doi.org/10.1007/s00374-014-0972-1

  • Antonacci A, Arduini F, Moscone D, Palleschi G, Scognamiglio V (2018) Nanostructured (bio)sensors for smart agriculture. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2017.10.022

  • Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta. https://doi.org/10.1007/s00604-016-1858-8

  • Arivalagan K, Ravichandran S, Rangasamy K (2011) Nanomaterials and its potential applications. Int J Chem Technol Res 3(2):534–538

    Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, Jose-Yacaman M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2015.02.014

  • Cacique IS, Domiciano GP, Moreira WR, Rodrigues FÁ, Cruz MFA, Serra NS, Català AB (2013) Effect of root and leaf applications of soluble silicon on blast development in rice. Bragantia. https://doi.org/10.1590/brag.2013.032

  • Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-015-1485-9

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev. https://doi.org/10.1016/j.rser.2011.11.035

  • Chaudhary I, Singh V (2020) Titanium dioxide nanoparticles and its impact on growth, biomass and yield of agricultural crops under environmental stress: a review. Res J Nanosci Nanotechnol. https://doi.org/10.3923/rjnn.2020.1.8

  • Chen J, Dou R, Yang Z, Wang X, Mao C, Gao X, Wang L (2016) The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.). Nanotoxicology. https://doi.org/10.3109/17435390.2015.1133864

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett. https://doi.org/10.1007/s10311-016-0600-4

  • Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2011.01.004

  • Clemente I, Menicucci F, Colzi I, Sbraci L, Benelli C, Giordano C, Petruccelli R (2018) Unconventional and sustainable nanovectors for phytohormone delivery: insights on Olea europaea. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.8b03489

  • Clemente I, Falsini S, Di Cola E, Fadda GC, Gonnelli C, Spinozzi F, Ristori S (2019) Green nanovectors for phytodrug delivery: in-depth structural and morphological characterization. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.9b01748

  • Das CK, Srivastava G, Dubey A, Verma S, Saxena M, Roy M, Sethy NK, Bhargava K, Singh SK, Sarkar S (2016) The seed stimulant effect of nano iron pyrite is compromised by nano cerium oxide: regulation by the trace ionic species generated in the aqueous suspension of iron pyrite. RSC Adv 6:67029–67038

    Article  CAS  Google Scholar 

  • de Espirito Santo Pereira A, Caixeta Oliveira H, Fernandes Fraceto L, Santaella C (2021) Nanotechnology potential in seed priming for sustainable agriculture. Nano. https://doi.org/10.3390/nano11020267

  • Dehkordi AL, Keivani F (2017) Applications of nanotechnology for improving production methods and performance of agricultural equipment. Biol Forum 2017:2249–3239

    Google Scholar 

  • Delgadillo-Vargas O, Jaime, Roberto GR (2016) Fertilizing techniques and nutrient balances in the agriculture industrialization transition: the case of sugarcane in the Cauca river valley (Colombia). Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2015.11.003

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol. https://doi.org/10.1038/nnano.2010.2

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep. https://doi.org/10.1016/j.btre.2017.03.002

  • Editorial Board (2020) Nano for agriculture, not the opposite. Nat Nanotechnol. https://doi.org/10.1038/s41565-020-0766-6

  • FAO (2017) The future of food and agriculture “trends and challenges”. FAO, Rome

    Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci. https://doi.org/10.3389/fenvs.2016.00020

  • Gamal ZMM (2018) Nano-particles: a recent approach for controlling stored grain insect pests. Acad J Agric Res. https://doi.org/10.15413/ajar.2017.IECCNA.14

  • Ganzoury M, Allam N (2015) Impact of nanotechnology on biogas production: a mini-review. Renew Sust Energ Rev. https://doi.org/10.1016/j.rser.2015.05.073

  • Ghidan Y, Antary M (2020) Applications of nanotechnology in agriculture. Appl Nanobiotechnol. https://doi.org/10.5772/intechopen.88390

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2011.06.007

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson MN, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew J, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. https://doi.org/10.1038/nmat3890

  • Gruber P, Marques MPC, Szita N, Mayr T (2017) Integration and application of optical chemical sensors in micro bioreactors. Lab Chip. https://doi.org/10.1039/C7LC00538E

  • Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R (2018) Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindobhog L). Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2018.04.014

  • Gutiérrez FJ, Mussons ML, Gatón P, Rojo R (2011) Nanotechnology and food industry. In: Scientific, health and social aspects of the food industry. IntechOpen, Croatia

    Google Scholar 

  • Hashem AS, Awadalla SS, Zayed GM, Maggi F, Benelli G (2018) Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum—insecticidal activity and mode of action. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-2068-1

  • He X, Deng H, Hwang HM (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal. https://doi.org/10.1016/j.jfda.2018.12.002

  • Heckmann LH, Hovgaard MB, Sutherland DS, Autrup H, Besenbacher F, Scott-Fordsmand JJ (2010) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology. https://doi.org/10.1007/s10646-010-0574-0

  • Hegde K, Brar SK, Verma M, Surampalli RY (2016) Current understandings of toxicity, risks and regulations of engineered nanoparticles with respect to environmental microorganisms. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-016-0005-4

  • Hernán D (2015) Eliminación de contaminantesemergentesdelaguamedianteozonación solar fotocatalítica (Tesis Doctoral). Universidad de Extremadura Spain

    Google Scholar 

  • Hu W, Wan L, Jian Y, Ren C, Jin K, Su X, Bai X, Haick H, Yao M, Wu W (2019) Electronic noses: from advanced materials to sensors aided with data processing. Adv Mater Technol. https://doi.org/10.1002/admt.201800488

  • Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol. https://doi.org/10.1016/j.taap.2017.05.025

  • Javad S, Akhtar I, Naz S (2020) Nanomaterials and agrowaste. In: Javad S (ed) Nanoagronomy. Springer, Cham. https://doi.org/10.1007/978-3-030-41275-3_11

    Chapter  Google Scholar 

  • Jin L, Son Y, Yoon TK, Kang YJ, Kim W, Chung H (2013) High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2012.10.031

  • Jośko I, Kusiak M, Oleszczuk P (2020) The chronic effects of CuO and ZnO nanoparticles on Eisenia fetida in relation to the bioavailability in aged soils. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128982

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. https://doi.org/10.1038/s41565-018-0131-1

  • Khan MI, Mohammad A, Patil G, Naqvi SA, Chauhan LK, Ahmad I (2011) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33(5):1477–1488

    Article  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnology. https://doi.org/10.1080/13102818.2014.960739

  • Krishnaswamy K, Vali H, Orsat V (2014) Value-adding to grape waste: green synthesis of gold nanoparticles. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2014.06.014

  • Kumar P, Burman U, Santra P (2015) Effect of nano-zinc oxide on nitrogenase activity in legumes: an interplay of concentration and exposure time. Int Nano Lett. https://doi.org/10.1007/s40089-015-0155-6

  • Kumar GD, Natarajan N, Nakkeeran S (2016) Antifungal activity of nanofungicides Trifloxystrobin 25%+ Tebuconazole 50% against Macrophomina phaseolina. Afr J Microbiol Res. https://doi.org/10.5897/AJMR2015.7692

  • Lade B (2019) Chapter 7: nanobiopesticide formulations: application strategies today and future perspectives. In: Nano-biopesticides today and future perspectives. Springer, Cham

    Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. A review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2015.01.104

  • Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK (2016) Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ 573:1089–1102

    Article  CAS  Google Scholar 

  • Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep. https://doi.org/10.1038/s41598-017-08669-5

  • Marchiol L (2018) Nanotechnology in agriculture: new opportunities and perspectives. New Vis Plant Sci. https://doi.org/10.5772/intechopen.74425

  • Mausavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419

    Google Scholar 

  • McGee CF (2020) The effects of silver nanoparticles on the microbial nitrogen cycle: a review of the known risks. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-09548-9

  • McGee CF, Storey S, Clipson N, Doyle E (2017) Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology. https://doi.org/10.1007/s10646-017-1776-5

  • Milewska-Hendel A, Gawecki R, Zubko M, Stróż D, Kurczynska E (2016) Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants. Acta Agrobot 2016:1694

    Google Scholar 

  • Misra AN, Misra M, Singh R (2013) Nanotechnology in agriculture and food industry. Int J Pure Appl Sci Technol 16(2):1–9

    CAS  Google Scholar 

  • Mohammadi H, Esmailpour M, Gheranpaye A (2016) Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants. Acta Agric Slovenica 107(2):385

    Article  Google Scholar 

  • Mohanlall V, Odayar K, Odhav B (2013) The role of nanoparticles on the plant growth of orthodox and recalcitrant seeds. Adv Compos Biocompos Nanocompos 1:287

    Google Scholar 

  • Mostafa M, Farah K, Ahmed AM, Kamel A, Abd-Elsalam (2021) Inorganic smart nanoparticles: a new tool to deliver CRISPR systems into plant cells. Springer, Cham

    Google Scholar 

  • Mura S, Greppi G, Roggero PP, Musu E, Pittalis D, Carletti A, Ghiglieri G, Irudayaraj J (2015) Functionalized gold nanoparticles for the detection of nitrates in water. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-013-0494-7

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci. https://doi.org/10.1016/j.plantsci.2010.04.012

  • Nanowerk Spotlight (2014) Nanotechnology in agriculture. Available from https://www.nanowerk.com/spotlight/spotid=37064.php

  • Nasr M (2019) Nanotechnology application in agricultural sector. Nanotechnol Life Sci. https://doi.org/10.1007/978-3-030-17061-5_13

  • Nayak S, Mishra CSK, Guru BC, Samal S (2018) Histological anomalies and alterations in enzyme activities of the earthworm Glyphidrilus tuberosus exposed to high concentrations of phosphogypsum. Environ Monit Assess. https://doi.org/10.1007/s10661-018-6933-7

  • Ndukwu MC, Ikechukwu-Edeh CE, Nwakuba N, Okosa I, Horsefall IT, Orji FN (2020) Nanomaterials application in greenhouse structures, crop processing machinery, packaging materials and agro-biomass conversion. Mater Sci Energy Technol. https://doi.org/10.1016/j.mset.2020.07.006

  • Noji T, Kamidaki C, Kawakami K, Shen JR, Kajino T, Fukushima Y, Sekitoh T, Itoh S (2011) Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photo system II reaction center complex into 23 nm nanopores in SBA. Langmuir. https://doi.org/10.1021/la1032916

  • Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Proc. https://doi.org/10.1016/j.aaspro.2014.11.042

  • Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2014.01.025

  • Phenny M (2018) Risks, uncertainties, and ethics of nanotechnology in agriculture. New Vis Plant Sci. https://doi.org/10.5772/intechopen.76590

  • Pramanik P, Krishnan P, Maity A, Mridha N, Mukherjee A, Rai V (2020) Application of nanotechnology in agriculture. In: Dasgupta N, Ranjan S, Lichtfouse E (eds) Environmental nanotechnology, environmental chemistry for a sustainable world. Springer, Cham. https://doi.org/10.1007/978-3-030-26668-4_9

    Chapter  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res. https://doi.org/10.1007/s12011-013-9833-2

  • Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ, Kallerhoff J, Muhammad A (2018) Dose dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2017.12.010

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol. https://doi.org/10.4236/jbnb.2012.322039

  • Raja K, Sowmya R, Sudhagar R, Moorthy PS, Govindaraju K, Subramanian KS (2019) Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vigna mungo). Mater Lett. https://doi.org/10.1016/j.matlet.2018.10.038

  • Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E, Barsova N (2019) ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ Geochem Health. https://doi.org/10.1007/s10653-019-00317-3

  • Rashid MI, Shahzad T, Shahid M, Ismail IM, Shah GM, Almeelbi T (2017) Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2016.10.063

  • Rathnaweera D, Pabodha D, Sandaruwan C, Priyadarshana G, Deraniyagala S, Kottegoda N (2019) Urea modified calcium carbonate nanohybrids as a next generation fertilizer. Kotelawala Defence University, Colombo

    Google Scholar 

  • Rawat A, Kumar R, Bhatt B, Ram P (2018) Nanotechnology in agriculture-a review. J. Curr. Microbiol. App. Sci, Int. https://doi.org/10.20546/ijcmas.2018.708.110

    Book  Google Scholar 

  • Razzaqi A (2010) The application of nanotechnology in coatings. In: 3rd student conference on agricultural machinery engineering

    Google Scholar 

  • Remya AS, Ramesh M, Saravanan M, Poopal RK, Bharathi S, Nataraj D (2015) Iron oxide nanoparticles to an Indian major carp, Labeo rohita: impacts on hematology, iono regulation and gill Na+/K+ ATPase activity. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2014.11.002

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. https://doi.org/10.1021/jf104517j

  • Rienzie R, Adassooriya NM (2018) Toxicity of nanomaterials in agriculture and food. Nano. https://doi.org/10.1007/978-3-030-05144-0_11

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2016.05.061

  • Rodrigues DF, Jaisi DP, Elimelech M (2013) Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol 47:625–633. https://doi.org/10.1021/es304002q

    Article  CAS  Google Scholar 

  • Roy A, Singh SK, Bajpai J, Bajpai AK (2014) Controlled pesticide release from biodegradable polymers. Cent Eur J Chem. https://doi.org/10.2478/s11532-013-0405-2

  • Satti SH, Raja NI, Javed B, Akram A, Mashwani ZU, Ahmad MS, Ikram M (2021) Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS One. https://doi.org/10.1371/journal.pone.0246880

  • Sayedena SV, Pilehvar B, Abrari-Vajari K, Zarafshar M, Eisvand HR (2018) Effects of seed nano-priming with multiwall carbon nanotubes (MWCNT) on seed germination and seedlings growth parameters of mountain ash (Sorbus luristanica Bornm.). Iran J For Poplar Res. https://doi.org/10.22092/IJFPR.2018.116749

  • Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2013.02.043

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases. J Phytology 2:83–92

    Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology. https://doi.org/10.3109/17435390.2010.537382

  • Shukla P, Chaurasia P, Younis K, Qadri OS, Faridi SA, Srivastava G (2019) Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-019-0058-2

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. Nanotechnol Plant Sci. https://doi.org/10.1007/978-3-319-14502-0_2

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-015-4171-x

  • Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JMF, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep. https://doi.org/10.1038/srep33643

  • Simonin M, Cantarel AAM, Crouzet A, Gervaix J, Martins JMF, Richaume A (2018) Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants. Front Microbiol. https://doi.org/10.3389/fmicb.2018.03102

  • Singh A, Prasad SM (2017) Nanotechnology and its role in agro-ecosystem: a strategic perspective. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-016-1062-8

  • Singh S, Singh BK, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol. https://doi.org/10.3923/rjnn.2015.1.5

  • Singha MR, Bell AT (2016) Design of an artificial photosynthetic system for production of alcohols in high concentration from CO2. Energy Environ Sci. https://doi.org/10.1039/C5EE02783G

  • Sousa GFM, Gomes DG, Campos EVR, Oliveira JL, Fraceto LF, Stolf-Moreira R, Oliveira HC (2018) Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front Environ Sci. https://doi.org/10.3389/fenvs.2018.00012

  • Suresh Kumar RS, Shiny PJ, Anjali CH, Jerobin J, Goshen KM, Magdassi S, Chandrasekaran N (2012) Distinctive effects of nano-sized permethrin in the environment. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-012-1161-0

  • Tepe Ö, Dursun AY (2014) Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology. Environ Sci Pollut Res 21(16):9911–9920

    Article  CAS  Google Scholar 

  • Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman H, Ashraf I, Sanaullah M (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137778

  • Wang H, Zhang M, Song Y, Li H, Huang H, Shao M, Liu Y, Kang Z (2018) Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon. https://doi.org/10.1016/j.carbon.2018.04.051

  • Wang A, Jin Q, Xu X, Miao AJ, White JC, Gardea-Torresdey JL, Zhao L (2020) High-throughput screening for engineered nanoparticles that enhance photosynthesis using mesophyll protoplasts. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.9b06429

  • Wu B, Zhu L, Le XC (2017) Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environ Pollut. https://doi.org/10.1016/j.envpol.2017.06.062

  • Wu F, You Y, Werner D, Jiao S, Hu J, Zhang X, Wan Y, Liu J, Wang B, Wang X (2020) Carbon nanomaterials affect carbon cycle-related functions of the soil microbial community and the coupling of nutrient cycles. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122144

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33

    Article  CAS  Google Scholar 

  • Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020) Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140240

  • Zhang M, Gao B, Chen J, Li Y (2015) Effects of graphene on seed germination and seedling growth. J Nanopart Res. https://doi.org/10.1007/s11051-015-2885-9

  • Zhang R, Tu C, Zhang H, Luo Y (2019) Stability and transport of titanium dioxide nanoparticles in three variable-charge soils. J Soils Sediments. https://doi.org/10.1007/s11368-019-02509-x

  • Zhang D, Liu G, Jing T, Luo J, Wei G, Mu W, Liu F (2020a) Lignin-modified electronegative epoxy resin nanocarriers effectively deliver pesticides against plant root-knot nematodes (Meloidogyne incognita). J Agric Food Chem. https://doi.org/10.1021/acs.jafc.0c01736

  • Zhang Y, Liu N, Wang W, Sun J, Zhu L (2020b) Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. Front Environ Sci Eng. https://doi.org/10.1007/s11783-020-1282-5

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, S., Sawarni, N., Dahiya, T., Rana, J.S., Sharma, M., Batra, B. (2023). Nanoagriculture: Advantages and Drawbacks. In: Fernandez-Luqueno, F., Patra, J.K. (eds) Agricultural and Environmental Nanotechnology. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-5454-2_1

Download citation

Publish with us

Policies and ethics