Skip to main content

Nanotechnology in Agriculture

  • Chapter
  • First Online:
Nanobiotechnology

Abstract

Nanotechnology has a very significant role in the field of agriculture. The global requirement of food is increasing whereas traditional farming techniques have failed to increase the productivity and are unable to repair ecosystems damage caused by existing farming techniques. Thus, nanotechnology has been a boon to the society with broad range of opportunities and advantages in agriculture and in our daily life. Nanotechnology can be implemented in agriculture through the use of nano-fertilizers for increasing efficiency of nutrient uptake, and nano-pesticides for controlling pest and pathogen. This chapter provides information on the recent advancements in nano-science research in agriculture, application of nanoformulations in controlling plant diseases, and microorganisms-based biosynthesis of nanoparticles. Present chapter also provides a brief idea of nano-sensors types, different nano-based smart delivery systems, use of nanoparticles in recycling of agricultural waste, use of nanotechnology in crop biotechnology, and use of nanotech for development in agricultural sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abobatta WF (2018) Nanotechnology application in agriculture. Acta Sci Agric 2(6):99–102

    Google Scholar 

  • Anjum NA, Rodrigo MAM, Moulick A et al (2016) Transport phenomena of nanoparticles in plants and animals/humans. Env Res 151:233–243

    Article  CAS  Google Scholar 

  • ByczyÅ„ska A (2017) Nano-silver as a potential biostimulant for plant—a review. WSN 86(3):180–192

    Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D et al (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N et al (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Ealias AM, Saravanakumar MP (2017) IOP Conf Series Mater Sci Eng 263:032019

    Article  Google Scholar 

  • Fawzy ZF, Yunsheng L, Shedeed SI, El-Bassiony AM (2018) Nanotechnology in agriculture—current and future situation. Res Rev J Agricult Allied Sci 7(2):73–76

    CAS  Google Scholar 

  • Gandhi G, Girgila PS, Aggarwal RK, Buttar BS (2010) Propensity for DNA damage in psoriasis patients genotyped for two candidate genes. J Carcinogene Mutagene 1:112

    Article  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ et al (2008) Nanoparticles as smart treatment delivery systems in plants: assessment of different techniques of microscopy for their visualisation in plant tissues. Ann Bot 101:187–195

    Article  PubMed  Google Scholar 

  • He X, Deng H, Hwang H-M (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27(1):1–21

    Article  PubMed  CAS  Google Scholar 

  • Joshi H, Choudhary P, Mundra S (2019) Future prospects of nanotechnology in agriculture. Int J Chem Stud 7:957–963

    CAS  Google Scholar 

  • Jurgons R, Seliger C, Hilpert A et al (2006) Drug loaded magnetic nanoparticles for cancer therapy. J Phys: Condens Matter 18:S2893–S2902

    CAS  Google Scholar 

  • Kamle M, Mahato DK, Devi S et al (2020) Nanotechnological interventions for plant health improvement and sustainable agriculture. 3 Biotech 10:168

    Google Scholar 

  • Kaushal M, Wani SP (2017) Nanosensors: Frontiers in precision agriculture. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 279–291

    Chapter  Google Scholar 

  • Khandelwal A, Joshi R (2018) Synthesis of nanoparticles and their application in agriculture. Acta Sci Agri 2(3):10–13

    Google Scholar 

  • Kumari M, Pandey S, Bhattacharya A et al (2017) Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum. Plant Physiol Biochem 121:216–225

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Kumaraswamy RV, Choudhary RC et al (2018) Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Sci Rep 8(1):1–12

    Article  Google Scholar 

  • Lang SS (2003) Waste fiber can be recycled into valuable products using new technique of electrospinning. Cornell Chronicle. Available at https://news.cornell.edu/stories/2003/09/electrospinning-cellulose-waste-fiberelectrospinning-cellulose-waste-fiber. Accessed on 30 May 2020

  • Latef A, Srivastava A, El-sadek M et al (2017) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29(4):1065–1073

    Article  Google Scholar 

  • Liou TH, Wu SJ (2010) Kinetics study and characteristics of silica nanoparticles produced from biomass-based material. Indus Eng Chem Res 49(18):8379–8387

    Article  CAS  Google Scholar 

  • Liu X, Feng Z, Zhang S et al (2006) Preparation and testing of cementing nano-subnano composites of slow- or controlled release of fertilizers. Sci Agri Sinica 39:1598–1604

    CAS  Google Scholar 

  • Ma D (2019) Hybrid nanoparticles: an introduction. In: Mohapatra S, Nguyen TA, Nguyen-Tri P (eds) Noble metal-metal oxide hybrid nanoparticles, 1st edn. Woodhead Publishing, pp 3–6

    Google Scholar 

  • Manikandan A, Subramanian KS (2016) Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. Int J Plant Soil Sci 9(4):1–9

    Article  CAS  Google Scholar 

  • Marchiol L (2018) Nanotechnology in agriculture: new opportunities and perspectives. In: Çelik Ö (ed) New vision in plant science. Intech, London, UK, pp 121–141

    Google Scholar 

  • Mattiello A, Marchiol L (2017) Application of nanotechnology in agriculture: assessment of TiO2 nanoparticle effects on barley. In: Janus M (ed) Application of titanium dioxide. InTech, London, UK, pp 23–39

    Google Scholar 

  • McLamore ES, Diggs A, Marzal PC et al (2010) Non-invasive quantication of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63(6):1004–1016

    Article  CAS  PubMed  Google Scholar 

  • Milani N, Hettiarachchi GM, Kirby JK et al (2015) Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil. PLoS ONE 10(5):

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appln 7:63–71

    Article  Google Scholar 

  • Naqvi S, Maitra AN, Abdin MZ et al (2012) Calcium phosphate nanoparticle mediated genetic transformation in plants. J Mater Chem 22(8):3500–3507

    Article  CAS  Google Scholar 

  • Ndlovu N, Mayaya T, Muitire C, Munyengwa N (2020) Nanotechnology applications in crop production and food systems. Int J Plant Breed 7(1):624–634

    Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu YJ, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides a new window for safe application. J Agric Food Chem 64:1447–1483

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Mishra A, Giri VP, Kumari M, Soni S (2019) A Green nano-synthesis to explore the plant microbe interactions. In: Verma JP, Macdonald C, Gupta V, Podile AR (eds) New and future developments in microbial biotechnology and bioengineering, 1st edn. Elsevier, pp 85–105

    Google Scholar 

  • Perea-de-Lugue A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci J 5(65):540–545

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J of Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Pulimi M, Subramanian S (2016) Nanomaterials for soil fertilisation and contaminant removal. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in Food and Agriculture 1. Springer, Cham, pp 229–246

    Chapter  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomat Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Sci 28:1539–1641

    Article  CAS  Google Scholar 

  • Salim N, Basri M, Rahman MBA et al (2011) Phase behaviour, formation and characterization of palm-based esters nanoemulsion formulation containing ibuprofen. J Nanomedic Nanotechnol 2(4):1000113

    Article  CAS  Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vis 2(1):2

    Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appln 7:31–53

    Article  Google Scholar 

  • Sh A, Abdelrazeik AB, Rakha OM (2015) Nanoemulsion of jojoba oil, preparation, characterization and insecticidal activity against Sitophilus oryzae (coleoptera: Curculionidae) on wheat. Int J Agri Innov Res 4(1):72–75

    Google Scholar 

  • Shang Y, Hasan M, Ahammed GJ et al (2019) Applications of nanotechnology in plant growth and crop protection: a review. Mol 24(14):2558

    Article  CAS  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83–92

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill). Saudi J Biol Sci 21(1):13–17

    Google Scholar 

  • Singh S, Singh BK, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5(1):1–5

    Article  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, cham, pp 81–101

    Google Scholar 

  • Srilatha B (2011) Nanotechnology in agriculture. J Nanomedic Nanotechnol 2:123

    Google Scholar 

  • The European Commission. Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial. Brussels, Belgium: Official Journal of the European Union. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:EN:PDF

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS et al (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS et al (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Topuz OK, Özvural EB, Zhao Q et al (2016) Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Food Chem 203:117–123

    Article  CAS  PubMed  Google Scholar 

  • Torney F (2009) Nanoparticle mediated plant transformation. Emerging technologies in plant science research. Interdepartmental Plant Physiology Major Fall Seminar Series Phys 696

    Google Scholar 

  • Torney F, Trewyn B, Lin V, Wang K (2007a) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotech 2(5):295–300

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007b) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  PubMed  Google Scholar 

  • Turner AP (2000) Biosensors-sense and sensitivity. Science 5495(290):1315–1317

    Article  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22(12):2848–2853

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Yadav KM (2016) Review on applications of nanotechnology in agriculture. Int J Dev Res 6(11):9942–9945

    Google Scholar 

  • Yao KS, Li SJ, Tzeng KC et al (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79–82:513–516

    Article  CAS  Google Scholar 

  • Young M, Willits D, Uchida M, Douglas T (2008) Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46:361–384

    Article  CAS  PubMed  Google Scholar 

  • Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5:95

    Google Scholar 

  • Zhao X, Meng Z, Wang Y et al (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat plants 3(12):956–964

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna Kalita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalita, R., Saha, O., Rahman, N., Tiwari, S., Phukon, M. (2021). Nanotechnology in Agriculture. In: Al-Khayri, J.M., Ansari, M.I., Singh, A.K. (eds) Nanobiotechnology . Springer, Cham. https://doi.org/10.1007/978-3-030-73606-4_5

Download citation

Publish with us

Policies and ethics