Skip to main content

Point-of-Care Biosensors for Healthcare Applications

  • Chapter
  • First Online:
Nanobiosensors for point-of-care medical diagnostics

Abstract

In the healthcare sector, biosensors have been extensively used to detect pathogens, antigens, and biomarkers for different diseases/ailments from various biological samples like blood serum, plasma, urine, saliva, faecal matter, etc. Point-of-care (POC) biosensors are scaled down to compact devices that can detect diseases next to the patient to reduce the therapeutic turnaround time. Determination of blood sugar level for diabetes monitoring is the most widely used and commercially available, self-usable POC biosensor. Although biosensors exist for various diseases, there is still a challenge of making them POC because of characteristic requirements of the bioreceptors, such as the storage conditions, and fabrication techniques. Cardiovascular diseases, neural disease (stress), kidney disease, urinary tract infection, and other viral infections are some diseases that can be detected using a biosensor. POC biosensors are available for detecting some of these diseases. This book chapter discusses different POC biosensors for all the prominent diseases and conditions. A good number of rapid POC devices for mass testing and detection of coronavirus disease 2019 (COVID-19) were quickly developed, which helped in controlling the pandemic. Handheld electronic device systems to display the outputs and results of the biosensors are also available for many of the biosensors. The advancement of the Internet of things (IoT) made these biosensor devices linkable with a smartphone to make delivery of results possible for the doctors to analyse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Hamid AS, Fetohi AE, Amin RS, Hameed RMA (2015) Design of digital blood glucose meter based on arduino UNO. IJournals 3

    Google Scholar 

  • Abdel-Hamid I, Atanasov P, Wilkins E (1995) Development of a needle-type biosensor for intravascular glucose monitoring. Anal Chim Acta 313:45–54

    Article  CAS  Google Scholar 

  • Ali MA, Srivastava S, Solanki PR et al (2013) Highly efficient bienzyme functionalized nanocomposite-based microfluidics biosensor platform for biomedical application. Sci Rep 3:1–9

    Article  CAS  Google Scholar 

  • Al-Tamer YY, Hadi EA (1997) Sweat urea, uric acid and creatinine concentrations in uraemic patients. Urol Res 25:337–340

    Article  CAS  Google Scholar 

  • Alwarappan S, Liu C, Kumar A, Li C-Z (2010) Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J Phys Chem C 114:12920–12924

    Article  CAS  Google Scholar 

  • Arefin MS, Redouté J-M, Yuce MR (2017) Wireless biosensors for POC medical applications. In: Medical biosensors for point of care (POC) applications. Elsevier, Amsterdam, pp 151–180

    Chapter  Google Scholar 

  • Arkin A, Ross J (1994) Computational functions in biochemical reaction networks. Biophys J 67:560–578

    Article  CAS  Google Scholar 

  • Atanasov P, Wilkins E (1994) Biosensor for continuous glucose monitoring. Biotechnol Bioeng 43:262–266

    Article  CAS  Google Scholar 

  • Audet G, Quinn C, Leon L (2015) Point-of-care cTnI tests accurately predict heat stroke severity; proof of concept for a heat stroke field test. FASEB J 29:914–993

    Article  Google Scholar 

  • Augustine LF, Dasi T, Palika R et al (2020) Point of care diagnosis of anemia using portable auto analyzer. Indian Pediatr 57:568–569

    Article  Google Scholar 

  • Bahl S, Javaid M, Bagha AK et al (2020) Biosensors applications in fighting COVID-19 pandemic. Apollo Med 17:221

    Google Scholar 

  • Bandodkar AJ, Jia W, Yardımcı C et al (2015) Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem 87:394–398

    Article  CAS  Google Scholar 

  • Baryeh K, Takalkar S, Lund M, Liu G (2017) Introduction to medical biosensors for point of care applications. In: Medical biosensors for point of care (POC) applications. Elsevier, Amsterdam, pp 3–25

    Chapter  Google Scholar 

  • Bass DE, Dobalian IT (1953) Ratio between true and apparent creatinine in sweat. J Appl Physiol 5:555–558

    Article  CAS  Google Scholar 

  • Benjamin E, Emelia J, Michael JB, Stephanie EC (2017) Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135:e146–e603

    Article  Google Scholar 

  • Berry SB, Fernandes SC, Rajaratnam A et al (2016) Measurement of the hematocrit using paper-based microfluidic devices. Lab Chip 16:3689–3694

    Article  CAS  Google Scholar 

  • Biomeditech P (n.d.) LifeSign MI® Myoglobin/CK-MB/Troponin I Rapid Test

    Google Scholar 

  • Bleher O, Ehni M, Gauglitz G (2012) Label-free quantification of cystatin C as an improved marker for renal failure. Anal Bioanal Chem 402:349–356

    Article  CAS  Google Scholar 

  • Boeddinghaus J, Nestelberger T, Koechlin L et al (2020) Early diagnosis of myocardial infarction with point-of-care high-sensitivity cardiac troponin I. J Am Coll Cardiol 75:1111–1124

    Article  CAS  Google Scholar 

  • Brazaca LC, Ribovski L, Janegitz BC, Zucolotto V (2017) Nanostructured materials and nanoparticles for point of care (POC) medical biosensors. In: Medical biosensors for point of care (POC) applications. Elsevier, Amsterdam, pp 229–254

    Chapter  Google Scholar 

  • Buford RJ, Green EC, McClung MJ (2008) A microwave frequency sensor for non-invasive blood-glucose measurement. In: 2008 IEEE sensors applications symposium. IEEE, pp 4–7

    Google Scholar 

  • Bunescu R, Struble N, Marling C et al (2013) Blood glucose level prediction using physiological models and support vector regression. In: 2013 12th International conference on machine learning and applications. IEEE, pp 135–140

    Chapter  Google Scholar 

  • Cánovas R, Cuartero M, Crespo GA (2019) Modern creatinine (bio) sensing: challenges of point-of-care platforms. Biosens Bioelectron 130:110–124

    Article  Google Scholar 

  • Çelik S (2019) Assessment of a point-of-care assay for cardiac biomarkers for patients suspected of acute myocardial infarction. Cukurova Med J 44:486–493

    Google Scholar 

  • Cerchia L, Hamm J, Libri D et al (2002) Nucleic acid aptamers in cancer medicine. FEBS Lett 528:12–16

    Article  CAS  Google Scholar 

  • Chambers RS, Johnston SA (2003) High-level generation of polyclonal antibodies by genetic immunization. Nat Biotechnol 21:1088–1092

    Article  CAS  Google Scholar 

  • Chawla LS, Kimmel PL (2012) Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int 82:516–524

    Article  Google Scholar 

  • Chen L-C, Wang E, Tai C-S et al (2020) Improving the reproducibility, accuracy, and stability of an electrochemical biosensor platform for point-of-care use. Biosens Bioelectron 155:112111. https://doi.org/10.1016/j.bios.2020.112111

    Article  CAS  Google Scholar 

  • Choi JR (2020) Development of point-of-care biosensors for COVID-19. Front Chem 8:517

    Article  CAS  Google Scholar 

  • Cooper MA (2003) Label-free screening of bio-molecular interactions. Anal Bioanal Chem 377:834–842

    Article  CAS  Google Scholar 

  • Dasgupta P, Kumar V, Krishnaswamy PR, Bhat N (2018) Development of biosensor for detection of serum creatinine. CSI Trans ICT 6:5–10

    Article  Google Scholar 

  • Davaji B, Lee CH (2014) A paper-based calorimetric microfluidics platform for bio-chemical sensing. Biosens Bioelectron 59:120–126

    Article  CAS  Google Scholar 

  • Davis J, Vaughan DH, Cardosi MF (1995) Elements of biosensor construction. Enzym Microb Technol 17:1030–1035

    Article  CAS  Google Scholar 

  • Derkus B (2016) Applying the miniaturization technologies for biosensor design. Biosens Bioelectron 79:901–913. https://doi.org/10.1016/j.bios.2016.01.033

    Article  CAS  Google Scholar 

  • DeRoock IB, Pennington ME, Sroka TC et al (2001) Synthetic peptides inhibit adhesion of human tumor cells to extracellular matrix proteins. Cancer Res 61:3308–3313

    CAS  Google Scholar 

  • Devi KSS, Krishnan UM (2020) Microfluidic electrochemical immunosensor for the determination of cystatin C in human serum. Microchim Acta 187:1–12

    Article  Google Scholar 

  • Dhawane M, Deshpande A, Jain R, Dandekar P (2019) Colorimetric point-of-care detection of cholesterol using chitosan nanofibers. Sensors Actuators B Chem 281:72–79

    Article  CAS  Google Scholar 

  • Drain PK, Hyle EP, Noubary F et al (2014) Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis 14:239–249

    Article  Google Scholar 

  • Edelstein CL (2016) Biomarkers of kidney disease. Academic, San Diego, CA

    Google Scholar 

  • Edelstein CL (2017) Chapter 6 - Biomarkers in acute kidney injury. In: Edelstein CL (ed) BT-B of KD, 2nd edn. Academic, San Diego, CA, pp 241–315

    Google Scholar 

  • Elsherif M, Hassan MU, Yetisen AK, Butt H (2018) Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12:5452–5462

    Article  CAS  Google Scholar 

  • Engel N, Ganesh G, Patil M et al (2015) Barriers to point-of-care testing in India: results from qualitative research across different settings, users and major diseases. PLoS One 10:e0135112

    Article  Google Scholar 

  • Fassett RG, Venuthurupalli SK, Gobe GC et al (2011) Biomarkers in chronic kidney disease: a review. Kidney Int 80:806–821

    Article  CAS  Google Scholar 

  • Fermann GJ, Suyama J (2002) Point of care testing in the emergency department. J Emerg Med 22:393–404

    Article  Google Scholar 

  • Frantz E, Li H, Steckl AJ (2020) Quantitative hematocrit measurement of whole blood in a point-of-care lateral flow device using a smartphone flow tracking app. Biosens Bioelectron 163:112300

    Article  CAS  Google Scholar 

  • Freeman MH, Hall JR, Leopold MC (2013) Monolayer-protected nanoparticle doped xerogels as functional components of amperometric glucose biosensors. Anal Chem 85:4057–4065

    Article  CAS  Google Scholar 

  • Fu Y, Li P, Bu L et al (2011) Exploiting metal-organic coordination polymers as highly efficient immobilization matrixes of enzymes for sensitive electrochemical biosensing. Anal Chem 83:6511–6517

    Article  CAS  Google Scholar 

  • Gavin PJ, Thomson RB Jr (2004) Review of rapid diagnostic tests for influenza. Clin Appl Immunol Rev 4:151–172

    Article  Google Scholar 

  • George M, Chacko A, Kurien SK (2019) Proactive diabetes management: research directions. In: Proceedings of the 20th International conference on distributed computing and networking, pp 486–491

    Chapter  Google Scholar 

  • Ghafar-Zadeh E (2015) Wireless integrated biosensors for point-of-care diagnostic applications. Sensors 15:3236–3261

    Article  CAS  Google Scholar 

  • Gooding JJ (2019) Can nanozymes have an impact on sensing? ACS Sens 4(9):2213–2214

    Article  CAS  Google Scholar 

  • Gouvêa C (2011) Biosensors for health applications. InTech, London

    Google Scholar 

  • Greenland P, Alpert JS, Beller GA et al (2010) 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines developed in collaboration with the American Society. J Am Coll Cardiol 56:e50–e103

    Article  Google Scholar 

  • Griffiths HR, Møller L, Bartosz G et al (2002) Biomarkers. Mol Asp Med 23:101–208

    Article  CAS  Google Scholar 

  • Güemes M, Rahman SA, Hussain K (2016) What is a normal blood glucose? Arch Dis Child 101:569–574

    Article  Google Scholar 

  • Harris L, Lakshmanan RS, Efremov V, Killard AJ (2017) Point of care (POC) blood coagulation monitoring technologies. In: Medical biosensors for point of care (POC) applications. Elsevier, Amsterdam, pp 203–227

    Chapter  Google Scholar 

  • Hex C, Smeets M, Penders J et al (2018) Accuracy, user-friendliness and usefulness of the Cobas h232 point-of-care test for NT-proBNP in primary care. J Clin Pathol 71:539–545

    Article  Google Scholar 

  • Huang C-J, Lu C-C, Lin T-Y et al (2007) An electrochemical albumin-sensing system utilizing microfluidic technology. J Micromech Microeng 17:835–842. https://doi.org/10.1088/0960-1317/17/4/022

    Article  CAS  Google Scholar 

  • Inan H, Poyraz M, Inci F et al (2017) Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem Soc Rev 46:366–388

    Article  CAS  Google Scholar 

  • Ip WS (2010) Development of a cost-effective multiplexed antibody microarray for qualitative and quantitative detection of multi-analytes. Hong Kong University of Science and Technology, Hong Kong

    Book  Google Scholar 

  • Jamshaid H, Zahid F, ud Din I et al (2020) Diagnostic and treatment strategies for COVID-19. AAPS PharmSciTech 21:1–14

    Article  Google Scholar 

  • Jneid H, Addison D, Bhatt DL et al (2017) 2017 AHA/ACC clinical performance and quality measures for adults with ST-elevation and non–ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. Circ Cardiovasc Qual Outcomes 10:e000032

    Article  Google Scholar 

  • Juntunen E (2018) Lateral flow immunoassays with fluorescent reporter technologies. Univ Turku, Turku, Finland

    Google Scholar 

  • Jurado-Sánchez B (2018) Nanoscale biosensors based on self-propelled objects. Biosensors 8:59

    Article  Google Scholar 

  • Juska VB, Pemble ME (2020) A critical review of electrochemical glucose sensing: evolution of biosensor platforms based on advanced nanosystems. Sensors 20:6013

    Article  CAS  Google Scholar 

  • Karyakin AA, Gitelmacher OV, Karyakina EE (1995) Prussian blue-based first-generation biosensor. A sensitive amperometric electrode for glucose. Anal Chem 67:2419–2423

    Article  CAS  Google Scholar 

  • Kassal P, Steinberg MD, Steinberg IM (2018) Wireless chemical sensors and biosensors: a review. Sensors Actuators B Chem 266:228–245

    Article  CAS  Google Scholar 

  • Kaur G, Tomar M, Gupta V (2017) A simple paper based microfluidic electrochemical biosensor for point-of-care cholesterol diagnostics. Phys Status Solidi 214:1700468

    Article  Google Scholar 

  • Kaur G, Tomar M, Gupta V (2018) Development of a microfluidic electrochemical biosensor: prospect for point-of-care cholesterol monitoring. Sensors Actuators B Chem 261:460–466

    Article  CAS  Google Scholar 

  • Kaushik A, Vasudev A, Arya SK et al (2014) Recent advances in cortisol sensing technologies for point-of-care application. Biosens Bioelectron 53:499–512

    Article  CAS  Google Scholar 

  • Kemper DWM, Semjonow V, de Theije F et al (2017) Analytical evaluation of a new point of care system for measuring cardiac Troponin I. Clin Biochem 50:174–180

    Article  CAS  Google Scholar 

  • Khan MS, Dighe K, Wang Z et al (2018) Detection of prostate specific antigen (PSA) in human saliva using an ultra-sensitive nanocomposite of graphene nanoplatelets with diblock-co-polymers and Au electrodes. Analyst 143:1094–1103. https://doi.org/10.1039/C7AN01932G

    Article  CAS  Google Scholar 

  • Killard AJ, Smyth MR (2000) Creatinine biosensors: principles and designs. Trends Biotechnol 18:433–437. https://doi.org/10.1016/S0167-7799(00)01491-8

    Article  CAS  Google Scholar 

  • Koopal CGJ, Bos A, Nolte RJM (1994) Third-generation glucose biosensor incorporated in a conducting printing ink. Sensors Actuators B Chem 18:166–170

    Article  CAS  Google Scholar 

  • Kost GJ, Ehrmeyer SS, Chernow B et al (1999) The laboratory-clinical interface: point-of-care testing. Chest 115:1140–1154

    Article  CAS  Google Scholar 

  • Kouri T, Fogazzi G, Gant V et al (2000) European urinalysis guidelines. Scand J Clin Lab Invest 60:1–96. https://doi.org/10.1080/00365513.2000.12056993

    Article  Google Scholar 

  • Kulkarni T, Slaughter G (2016) Application of semipermeable membranes in glucose biosensing. Membranes (Basel) 6:55

    Article  Google Scholar 

  • Kumar S, Kumar S, Ali MA et al (2013) Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. Biotechnol J 8:1267–1279

    Article  CAS  Google Scholar 

  • Larsson A, Greig-Pylypczuk R, Huisman A (2015) The state of point-of-care testing: a European perspective. Ups J Med Sci 120:1–10

    Article  Google Scholar 

  • Li M, Du Y, Zhao F et al (2015) Reagent-and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS). Biomed Opt Express 6:849–858

    Article  Google Scholar 

  • Lingervelder D, Koffijberg H, Kusters R, IJzerman MJ (2019) Point-of-care testing in primary care: a systematic review on implementation aspects addressed in test evaluations. Int J Clin Pract 73:e13392

    Article  Google Scholar 

  • Lippi G, Mattiuzzi C, Cervellin G (2013) Point of care troponin testing: rules and regulations. J Electrocardiol 46:727–728

    Article  Google Scholar 

  • Liu G, Ma Z (2018) Study on a novel portable urine analyzer based on optical fiber bundles. Measurement 130:412–421. https://doi.org/10.1016/j.measurement.2018.08.037

    Article  Google Scholar 

  • Liu D, Wang J, Wu L et al (2020) Trends in miniaturized biosensors for point-of-care testing. TrAC Trends Anal Chem 122:115701

    Article  CAS  Google Scholar 

  • Lloyd JE, Broughton A, Selby C (1996) Salivary creatinine assays as a potential screen for renal disease. Ann Clin Biochem 33:428–431. https://doi.org/10.1177/000456329603300505

    Article  CAS  Google Scholar 

  • Loewenstein D, Stake C, Cichon M (2013) Assessment of using fingerstick blood sample with i-STAT point-of-care device for cardiac troponin I assay. Am J Emerg Med 31:1236–1239

    Article  Google Scholar 

  • Lopes P, Costa-Rama E, Beirão I et al (2019) Disposable electrochemical immunosensor for analysis of cystatin c, a CKD biomarker. Talanta 201:211–216

    Article  CAS  Google Scholar 

  • Luppa PB, Müller C, Schlichtiger A, Schlebusch H (2011) Point-of-care testing (POCT): current techniques and future perspectives. TrAC Trends Anal Chem 30:887–898

    Article  CAS  Google Scholar 

  • Martin CL (2010) i-stat–combining chemistry and haematology in PoCT. Clin Biochem Rev 31:81

    Google Scholar 

  • Matsumoto T, Ohashi A, Ito N, Fujiwara H (2001) A long-term lifetime amperometric glucose sensor with a perfluorocarbon polymer coating. Biosens Bioelectron 16:271–276

    Article  CAS  Google Scholar 

  • Mavrikou S, Moschopoulou G, Zafeirakis A et al (2018) An ultra-rapid biosensory point-of-care (POC) assay for prostate-specific antigen (PSA) detection in human serum. Sensors 18(11):3834

    Article  Google Scholar 

  • Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1:182–188

    Article  Google Scholar 

  • Mazzaferri E, Lanese R, Skillman T, Keller M (1970) Use of test strips with colour meter to measure blood-glucose. Lancet 295:331–333

    Article  Google Scholar 

  • Meagher RJ, Negrete OA, Van Rompay KK (2016) Engineering paper-based sensors for Zika virus. Trends Mol Med 22:529–530. https://doi.org/10.1016/j.molmed.2016.05.009

    Article  CAS  Google Scholar 

  • Mehmeti E, Stanković DM, Chaiyo S et al (2017) Wiring of glucose oxidase with graphene nanoribbons: an electrochemical third generation glucose biosensor. Microchim Acta 184:1127–1134

    Article  CAS  Google Scholar 

  • Mejía-Salazar JR, Rodrigues Cruz K, Materón Vásques EM, Novais de Oliveira O Jr (2020) Microfluidic point-of-care devices: new trends and future prospects for eHealth diagnostics. Sensors 20(7):1951

    Article  Google Scholar 

  • Melanson SF, Lewandrowski EL, Januzzi JL, Lewandrowski KB (2004) Reevaluation of myoglobin for acute chest pain evaluation: would false-positive results on “first-draw” specimens lead to increased hospital admissions? Am J Clin Pathol 121:804–808

    Article  Google Scholar 

  • Mojibi N, Bagheri B, Zargari M (2018) The clinical evaluation role of ischaemia modified albumin in diagnosis of acute coronary syndrome: unstable angina to myocardial infarction. J Clin Diagn Res 12(1):BC06–BC09

    CAS  Google Scholar 

  • Mondal S, Mondal H, Biri SK (2020) Surveillance accuracy of smartphone-dependent glucose meters in the measurement of plasma glucose. Indian J Endocrinol Metab 24:181

    Article  Google Scholar 

  • Monošík R, Streďanský M, Šturdík E (2012) Biosensors-classification, characterization and new trends. Acta Chim Slovaca 5:109–120

    Article  Google Scholar 

  • Mythili S, Malathi N (2015) Diagnostic markers of acute myocardial infarction. Biomed Rep 3:743–748

    Article  Google Scholar 

  • Newman JD, Turner APF (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20:2435–2453

    Article  CAS  Google Scholar 

  • Nickolas TL, Barasch J, Devarajan P (2008) Biomarkers in acute and chronic kidney disease. Curr Opin Nephrol Hypertens 17:127–132

    Article  CAS  Google Scholar 

  • Nikhil B, Pawan J, Nello F, Pedro E (2016) Introduction to biosensors. Essays Biochem 60:1–8

    Article  Google Scholar 

  • O’Gara PT, Kushner FG, Ascheim DD et al (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 127:529–555

    Article  Google Scholar 

  • Onopiuk A, Tokarzewicz A, Gorodkiewicz E (2015) Cystatin C: a kidney function biomarker. Adv Clin Chem 68:57–69

    Article  CAS  Google Scholar 

  • Ouyang M, Tu D, Tong L et al (2020) A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point of care. Biosens Bioelectron 171:112621

    Article  Google Scholar 

  • Pandey CM, Augustine S, Kumar S et al (2018) Microfluidics based point-of-care diagnostics. Biotechnol J 13:1700047

    Article  Google Scholar 

  • Pardee K, Green AA, Takahashi MK et al (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165:1255–1266. https://doi.org/10.1016/j.cell.2016.04.059

    Article  CAS  Google Scholar 

  • Patel S, Nanda R, Sahoo S, Mohapatra E (2016) Biosensors in health care: the milestones achieved in their development towards lab-on-chip-analysis. Biochem Res Int 2016:3130469

    Article  Google Scholar 

  • Peacock WF, Diercks D, Birkhahn R et al (2016) Can a point-of-care troponin I assay be as good as a central laboratory assay? A MIDAS investigation. Ann Lab Med 36:405–412

    Article  Google Scholar 

  • Peeling RW, Mabey D (2010) Point-of-care tests for diagnosing infections in the developing world. Clin Microbiol Infect 16:1062–1069

    Article  CAS  Google Scholar 

  • Pezzuto F, Scarano A, Marini C et al (2019) Assessing the reliability of commercially available point of care in various clinical fields. Open Public Health J 12:342–368

    Article  Google Scholar 

  • Ramachandran A, Snehalatha C, Kapur A et al (2001) High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia 44:1094–1101

    Article  CAS  Google Scholar 

  • Randviir EP, Banks CE (2013) Analytical methods for quantifying creatinine within biological media. Sensors Actuators B Chem 183:239–252. https://doi.org/10.1016/j.snb.2013.03.103

    Article  CAS  Google Scholar 

  • Roffi M, Patrono C, Collet J-P et al (2016) 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 37:267–315. https://doi.org/10.1093/eurheartj/ehv320

    Article  CAS  Google Scholar 

  • Ruedas-Rama MJ, Hall EAH (2010) Analytical nanosphere sensors using quantum dot−enzyme conjugates for urea and creatinine. Anal Chem 82:9043–9049. https://doi.org/10.1021/ac101838n

    Article  CAS  Google Scholar 

  • Sabharwal M, Mohit M, Kolukula VK, et al (2021) 594-P: use of connected glucometer with real-time feedback and counseling for glycemic control in patients with diabetes in India: BeatO’s Connected Diabetes Care Program

    Google Scholar 

  • Samson R, Navale GR, Dharne MS (2020) Biosensors: frontiers in rapid detection of COVID-19. 3. Biotech 10:1–9

    Google Scholar 

  • Satyanarayana S, Sagili K, Chadha SS, Pai M (2014) Use of rapid point-of-care tests by primary health care providers in India: findings from a community-based survey. Public Health Action 4:249–251

    Article  CAS  Google Scholar 

  • Scholten K, Meng E (2018) A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. Int J Pharm 544:319–334

    Article  CAS  Google Scholar 

  • Senbua W, Mearnchu J, Wichitwechkarn J (2020) Easy-to-use and reliable absorbance-based MPH-GST biosensor for the detection of methyl parathion pesticide. Biotechnol Rep 27:e00495. https://doi.org/10.1016/j.btre.2020.e00495

    Article  Google Scholar 

  • Shanmugam NR, Muthukumar S, Selvam AP, Prasad S (2016) Electrochemical nanostructured ZnO biosensor for ultrasensitive detection of cardiac troponin-T. Nanomedicine 11:1345–1358. https://doi.org/10.2217/nnm-2016-0048

    Article  CAS  Google Scholar 

  • Shanmugam NR, Muthukumar S, Tanak AS, Prasad S (2018) Multiplexed electrochemical detection of three cardiac biomarkers cTnI, cTnT and BNP using nanostructured ZnO-sensing platform. Futur Cardiol 14:131–141. https://doi.org/10.2217/fca-2017-0074

    Article  CAS  Google Scholar 

  • Shergujri MA, Jaman R, Baruah AJ et al (2019) Based sensors for biomedical applications. In: Biomedical engineering and its applications in healthcare. Springer, New York, pp 355–376

    Chapter  Google Scholar 

  • Shlipak MG, Matsushita K, Ärnlöv J et al (2013) Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med 369:932–943

    Article  CAS  Google Scholar 

  • Sin MLY, Mach KE, Wong PK, Liao JC (2014) Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn 14:225–244. https://doi.org/10.1586/14737159.2014.888313

    Article  CAS  Google Scholar 

  • Singh N, Shukla MM, Shukla MK et al (2010) Field and laboratory comparative evaluation of rapid malaria diagnostic tests versus traditional and molecular techniques in India. Malar J 9:191. https://doi.org/10.1186/1475-2875-9-191

    Article  Google Scholar 

  • Singh S, Yadav R, Bansal AK et al (2013) Evaluation of services provided for malaria control in four high endemic PHCs of Jaipur, India. IJRRMS 3:26–28

    Google Scholar 

  • Singh P, Mandal S, Roy D, Chanda N (2021) Facile detection of blood creatinine using binary copper–iron oxide and rGO-based nanocomposite on 3D printed Ag-electrode under POC settings. ACS Biomater Sci Eng 7:3446–3458. https://doi.org/10.1021/acsbiomaterials.1c00484

    Article  CAS  Google Scholar 

  • Sivaraman R, Shankar N 2016) Non-invasive blood glucose monitoring with a wearable device. U.S. Patent Application 14/697,623

    Google Scholar 

  • Smith GT, Dwork N, Khan SA et al (2016) Robust dipstick urinalysis using a low-cost, micro-volume slipping manifold and mobile phone platform. Lab Chip 16:2069–2078. https://doi.org/10.1039/c6lc00340k

    Article  CAS  Google Scholar 

  • Snaith B, Harris MA, Shinkins B et al (2018) Point-of-care creatinine testing for kidney function measurement prior to contrast-enhanced diagnostic imaging: evaluation of the performance of three systems for clinical utility. Clin Chem Lab Med 56:1269–1276. https://doi.org/10.1515/cclm-2018-0128

    Article  CAS  Google Scholar 

  • Soler M, Huertas CS, Lechuga LM (2019) Label-free plasmonic biosensors for point-of-care diagnostics: a review. Expert Rev Mol Diagn 19:71–81

    Article  CAS  Google Scholar 

  • Song J, Mauk MG, Hackett BA et al (2016) Instrument-free point-of-care molecular detection of Zika virus. Anal Chem 88:7289–7294. https://doi.org/10.1021/acs.analchem.6b01632

    Article  CAS  Google Scholar 

  • Sönksen PH, Judd SL, Lowy C (1978) Home monitoring of blood-glucose: method for improving diabetic control. Lancet 311:729–732

    Article  Google Scholar 

  • Soper SA, Brown K, Ellington A et al (2006) Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens Bioelectron 21:1932–1942. https://doi.org/10.1016/j.bios.2006.01.006

    Article  CAS  Google Scholar 

  • Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463

    Article  Google Scholar 

  • Syedmoradi L, Daneshpour M, Alvandipour M et al (2017) Point of care testing: the impact of nanotechnology. Biosens Bioelectron 87:373–387

    Article  CAS  Google Scholar 

  • Tang F, Meng X, Chen D et al (2000) Glucose biosensor enhanced by nanoparticles. Sci China Ser B Chem 43:268–274

    Article  CAS  Google Scholar 

  • Tesch GH (2010) Serum and urine biomarkers of kidney disease: a pathophysiological perspective. Nephrology 15:609–616

    Article  CAS  Google Scholar 

  • Teymourian H, Barfidokht A, Wang J (2020) Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem Soc Rev 49(21)

    Google Scholar 

  • Thygesen K, Alpert JS, Jaffe AS et al (2018) Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol 72:2231–2264

    Article  Google Scholar 

  • Tiwari P (2010) Providing healthcare services in rural India: innovative application of mobile technology. Health Care Informatics Rev Online 14:3–9

    Google Scholar 

  • Tseng C-C, Yang R-J, Ju W-J, Fu L-M (2018) Microfluidic paper-based platform for whole blood creatinine detection. Chem Eng J 348:117–124. https://doi.org/10.1016/j.cej.2018.04.191

    Article  CAS  Google Scholar 

  • Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  Google Scholar 

  • Turner APF (2014) Overview and introduction to Biosensors. Biosensors & Bioelectronics Centre

    Google Scholar 

  • Vashist SK (2020) In vitro diagnostic assays for COVID-19: recent advances and emerging trends. Diagnostics 10(4):202

    Article  Google Scholar 

  • Venkatapathy R, Govindarajan V, Oza N et al (2014) Salivary creatinine estimation as an alternative to serum creatinine in chronic kidney disease patients. Int J Nephrol 2014:742724

    Article  Google Scholar 

  • Vyas S, Puwar B, Patel V et al (2014) Study on validity of a rapid diagnostic test kit versus light microscopy for malaria diagnosis in Ahmedabad city, India. East Mediterr Health J 20(4):236–241

    Article  CAS  Google Scholar 

  • Wang J (2001) Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13:983–988

    Article  CAS  Google Scholar 

  • Wang J, Lu F (1998) Oxygen-rich oxidase enzyme electrodes for operation in oxygen-free solutions. J Am Chem Soc 120:1048–1050

    Article  CAS  Google Scholar 

  • Weymouth W, Thaut L, Olson N (2018) Point of view telemedicine at point of care. Cureus 10(11):e3662

    Google Scholar 

  • Wong CW, Teo BW, Lamoureux E et al (2015) Serum cystatin C, markers of chronic kidney disease, and retinopathy in persons with diabetes. J Diabetes Res 2015:404280

    Article  Google Scholar 

  • Yamaguchi M, Deguchi M, Wakasugi J et al (2006) Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment. Biosens Bioelectron 21:1007–1014

    Article  CAS  Google Scholar 

  • Yang J, Lee H, Cho M et al (2012) Nonenzymatic cholesterol sensor based on spontaneous deposition of platinum nanoparticles on layer-by-layer assembled CNT thin film. Sensors Actuators B Chem 171:374–379

    Article  Google Scholar 

  • Zarei M (2017) Portable biosensing devices for point-of-care diagnostics: recent developments and applications. TrAC Trends Anal Chem 91:26–41

    Article  CAS  Google Scholar 

  • Zhang B, Morales AW, Peterson R et al (2014) Label-free detection of cardiac troponin I with a photonic crystal biosensor. Biosens Bioelectron 58:107–113. https://doi.org/10.1016/j.bios.2014.02.057

    Article  CAS  Google Scholar 

  • Zhang H, Zhang W, Zhou A (2020) Chapter 4 - Smartphone for glucose monitoring. In: Yoon J-Y (ed) BT-SBMD. Academic, San Diego, CA, pp 45–65

    Google Scholar 

  • Zhu Z, Garcia-Gancedo L, Flewitt AJ et al (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12:5996–6022

    Article  Google Scholar 

  • Zrari SA, Mohammed SK (2016) Diagnostic efficiency of serum creatine kinase and troponin I in patients with suspected acute myocardial infarction. Trakia J Sci 14:314–319

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daurai, B., Gogoi, M. (2022). Point-of-Care Biosensors for Healthcare Applications. In: Gogoi, M., Patra, S., Kundu, D. (eds) Nanobiosensors for point-of-care medical diagnostics . Springer, Singapore. https://doi.org/10.1007/978-981-19-5141-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5141-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5140-4

  • Online ISBN: 978-981-19-5141-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics