Skip to main content

Decontamination of Fruits

  • Chapter
  • First Online:
Microbial Decontamination of Food

Abstract

Fruits are well-known for being high in carbohydrates, fiber, vitamins, and minerals. As majority of these fruits are either minimally processed or consumed raw, they are more vulnerable to microbial contamination and can act as a vehicle for several foodborne pathogens such as Listeria monocytogenes, Salmonella spp., Shigella, Escherichia coli, etc. leading to outbreak of foodborne illness. Despite the fact that several traditional technologies are employed to eradicate microorganisms and improve shelf life, no technique has been reported that can guarantee food safety without compromising nutritional quality. Today, as the consumer awareness toward the consumption of fresh fruits has been increased, there is a huge demand for this produce in the market. In this context, it is necessary to discuss the technologies that can be used to decontaminate food produce effectively. This book chapter discusses about the technologies and their mechanisms of action, factors influencing their efficiency, and the challenges in fruit decontamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 21CFR184.1366 (n.d.) Hydrogen peroxide, Code of Federal Regulations 21, Parts 170–199, Section 184.1366, 463

    Google Scholar 

  • 2CFER.180.2 (n.d.) Code of Federal Regulations 40 CFR.Part 180.2. Pesticide chemicals considered safe. Retrieved from https://www.gpo.gov/fdsys/granule/CFR-2002-title40-vol20/CFR-2002-title40-vol20-sec180-2

  • Abid M, Jabbar S, Wu T, Hashim MM, Hu B, Lei S, Zeng X (2013) Effect of ultrasound on different quality parameters of apple juice. Ultrason Sonochem 20(5):1182–1187

    Article  CAS  PubMed  Google Scholar 

  • Aborisade A (2014) Heat treatments against the green Mould on sweet orange (Citrus sinensis L. Osbeck) fruits at tropical ambient storage. Paper presented at the V International Conference Postharvest Unlimited 1079

    Google Scholar 

  • Aday MS, Temizkan R, Büyükcan MB, Caner C, Technology. (2013) An innovative technique for extending shelf life of strawberry: ultrasound. LWT Food Sci Technol 52(2):93–101

    Article  CAS  Google Scholar 

  • Ağçam E, Akyıldız A, Dündar B (2018) Thermal pasteurization and microbial inactivation of fruit juices. In: Fruit juices. Springer, New York, pp 309–339

    Chapter  Google Scholar 

  • Amiali M, Ngadi MO (2012) Microbial decontamination of food by pulsed electric fields (PEFs). In: Microbial decontamination in the food industry. Springer, New York, pp 407–449

    Chapter  Google Scholar 

  • Baier M, Ehlbeck J, Knorr D, Herppich WB, Schlüter O (2015) Impact of plasma processed air (PPA) on quality parameters of fresh produce. Postharvest Biol Technol 100:120–126

    Article  CAS  Google Scholar 

  • Bakeer AT (2016) Effect of hot water alone or in combination with acetic acid on control of blue mold disease and fruit quality of pears during storage. J Agric Technol 12(3):579–592

    Google Scholar 

  • Barba FJ, Esteve MJ, Frigola A (2013) Physicochemical and nutritional characteristics of blueberry juice after high pressure processing. Food Res Int 50(2):545–549

    Article  CAS  Google Scholar 

  • Berardinelli A, Vannini L, Ragni L, Guerzoni ME (2012) Impact of atmospheric plasma generated by a DBD device on quality-related attributes of “Abate Fetel” pear fruit. In: Plasma for bio-decontamination, medicine and food security. Elsevier, London, pp 457–467

    Chapter  Google Scholar 

  • Bhagat A, Mahmoud BS, Linton RH (2011) Effect of chlorine dioxide gas on Salmonella enterica inoculated on navel orange surfaces and its impact on the quality attributes of treated oranges. Foodborne Pathog Dis 8(1):77–85

    Article  CAS  PubMed  Google Scholar 

  • Bhilwadikar T, Pounraj S, Manivannan S, Rastogi N, Negi P (2019) Decontamination of microorganisms and pesticides from fresh fruits and vegetables: a comprehensive review from common household processes to modern techniques. Compr Rev Food Sci Food Saf 18(4):1003–1038

    Article  CAS  PubMed  Google Scholar 

  • Bialka KL, Demirci A (2007) Decontamination of Escherichia coli O157: H7 and Salmonella enterica on blueberries using ozone and pulsed UV-light. J Food Sci 72(9):391–396

    Article  Google Scholar 

  • Bisht B, Bhatnagar P, Gururani P, Kumar V, Tomar MS, Sinhmar R, Kumar S (2021) Food irradiation: effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a review. Trends Food Sci Technol 114:372–385

    Article  CAS  Google Scholar 

  • Boshoff M, Slabbert M, Korsten L (1995) Effect of detergent sanitizers on post-harvest diseases of avocado. S Afr Avocado Growers’ Assoc Yearb 18:96–98

    Google Scholar 

  • Botondi R, Moscetti R, Massantini R (2016) A comparative study on the effectiveness of ozonated water and peracetic acid in the storability of packaged fresh-cut melon. J Food Sci Technol 53(5):2352–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges DF, Wu VCH (2018) Gaseous chlorine dioxide for postharvest treatment of produce. In: Postharvest disinfection of fruits and vegetables. Springer, New York, pp 243–252

    Chapter  Google Scholar 

  • Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A (2012) Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int J Antimicrob Agents 39(5):381–389

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Hu Z, Pang B, Wang H, Xie H, Wu F (2010) Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control 21(4):529–532

    Article  CAS  Google Scholar 

  • Cebrian G, Condon S, Manas P (2017) Physiology of the inactivation of vegetative bacteria by thermal treatments: mode of action, influence of environmental factors and inactivation kinetics. Foods 6(12):107

    Article  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention (2002) Multistate outbreaks of Salmonella serotype Poona infections associated with eating cantaloupe from Mexico–United States and Canada, 2000-2002. MMWR Morb Mortal Wkly Rep 51(46):1044–1047

    Google Scholar 

  • Chavez-Sanchez I, Carrillo-Lopez A, Vega-Garcia M, Yahia EM (2013) The effect of antifungal hot-water treatments on papaya postharvest quality and activity of pectinmethylesterase and polygalacturonase. J Food Sci Technol 50(1):101–107

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zhu C (2011) Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.). Postharvest Biol Technol 61(2-3):117–123

    Article  CAS  Google Scholar 

  • Conway WS, Leverentz B, Janisiewicz WJ, Saftner RA, Camp MJ (2005) Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit. Postharvest Biol Technol 36(3):235–244

    Article  CAS  Google Scholar 

  • Cullen P, Valdramidis V, Tiwari B, Patil S, Bourke P, O’Donnell C (2010) Ozone processing for food preservation: an overview on fruit juice treatments. Ozone Sci Eng 32(3):166–179

    Article  CAS  Google Scholar 

  • Dagher D, Ungar K, Robison R, Dagher F (2017) The wide spectrum high biocidal potency of Bioxy formulation when dissolved in water at different concentrations. PLoS One 12(2):e0172224

    Article  PubMed  PubMed Central  Google Scholar 

  • Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, SJ, C. (2018) Surveillance for foodborne disease outbreaks-United States, 2009–2015. MMWR Surveill Summ 67(10):1–11. https://doi.org/10.15585/mmwr.ss6710a1

    Article  PubMed  PubMed Central  Google Scholar 

  • Dilarri G, Zamuner CFC, Bacci M, Ferreira H (2021) Evaluation of calcium hydroxide, calcium hypochlorite, peracetic acid, and potassium bicarbonate as citrus fruit sanitizers. J Food Sci Technol 2021:1–9

    Google Scholar 

  • Ding T, Ge Z, Shi J, Xu Y-T, Jones CL, Liu D-H (2015) Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits. LWT Food Sci Technol 60(2):1195–1199

    Article  CAS  Google Scholar 

  • Du J, Han Y, Linton R (2002) Inactivation by chlorine dioxide gas (ClO2) of Listeria monocytogenes spotted onto different apple surfaces. Food Microbiol 19(5):481–490

    Article  CAS  Google Scholar 

  • Elez-Martínez P, Soliva-Fortuny RC, Martín-Belloso O (2005) Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment. Eur Food Res Technol 222(3-4):321–329

    Article  Google Scholar 

  • Estrela C, Estrela CR, Barbin EL, Spanó JCE, Marchesan MA, Pécora JD (2002) Mechanism of action of sodium hypochlorite. Braz Dent J 13(2):113–117

    Article  PubMed  Google Scholar 

  • Eyn AS (2006) The comparison of microwave and So2 fumigation methods in decontamination of dried fruits (raisin, plum and apricot). J Agric Eng Res 7(28):1–12

    Google Scholar 

  • Fan X, Huang R, Chen H (2017) Application of ultraviolet C technology for surface decontamination of fresh produce. Trends Food Sci Technol 70:9–19

    Article  CAS  Google Scholar 

  • Feroz F, Nafisa S, Noor R (2019) Emerging technologies for food safety: high pressure processing (HPP) and cold plasma technology (CPT) for decontamination of foods. Bangladesh J Microbiol 36(1):35–43

    Article  Google Scholar 

  • Forney CF, Rij RE, Denis-Arrue R, Smilanick JL (1991) Vapor phase hydrogen peroxide inhibits postharvest decay of table grapes. Hortic Sci 26(12):1512–1514

    CAS  Google Scholar 

  • Garud SR, Priyanka BS, Rastogi NK, Prakash M, Negi PS (2018) Efficacy of ozone and lactic acid as nonthermal hurdles for preservation of sugarcane juice. Ozone Sci Eng 40(3):198–208

    Article  CAS  Google Scholar 

  • Geveke DJ, Brunkhorst C, Fan X (2007) Radio frequency electric fields processing of orange juice. Innov Food Sci Emerg Technol 8(4):549–554

    Article  Google Scholar 

  • Geysen S, Verlinden BE, Nicolaï BM (2005) Thermal treatments of fresh fruit and vegetables. In: Improving the safety of fresh fruit and vegetables. Springer, New York, pp 429–453

    Chapter  Google Scholar 

  • Gil MI, Selma MV, Lopez-Galvez F, Allende A (2009) Fresh-cut product sanitation and wash water disinfection: problems and solutions. Int J Food Microbiol 134(1-2):37–45

    Article  CAS  PubMed  Google Scholar 

  • Gilbert P, Moore L (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99(4):703–715

    Article  CAS  PubMed  Google Scholar 

  • Gomez R (1977) Nucleic acid damage in thermal inactivation of vegetative microorganisms. Adv Biochem Eng 5:49–67

    Article  CAS  Google Scholar 

  • Gómez PL, Welti-Chanes J, Alzamora SM (2011) Hurdle technology in fruit processing. Annu Rev Food Sci Technol 2:447–465

    Article  PubMed  Google Scholar 

  • González-Cebrino F, Durán R, Delgado-Adámez J, Contador R, Ramírez R (2013) Changes after high-pressure processing on physicochemical parameters, bioactive compounds, and polyphenol oxidase activity of red flesh and peel plum purée. Innov Food Sci Emerg Technol 20:34–41

    Article  Google Scholar 

  • Greenspan FP, Margulies PH (1950) Treatment of raw plant tissue. U.S. Patent, 2,512-640

    Google Scholar 

  • Guentzel JL, Lam KL, Callan MA, Emmons SA, Dunham VL (2010) Postharvest management of gray mold and brown rot on surfaces of peaches and grapes using electrolyzed oxidizing water. Int J Food Microbiol 143(1-2):54–60

    Article  CAS  PubMed  Google Scholar 

  • Harris LJ, Farber JN, Beuchat LR, Parish ME, Suslow TV, Garrett EH, Busta FF (2003) Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Compr Rev Food Sci Food Saf 2:78–141

    Article  Google Scholar 

  • Hazbavi I, Khoshtaghaza MH, Mostaan A, Banakar A (2015) Effect of postharvest hot-water and heat treatment on quality of date palm (cv. Stamaran). J Saudi Soc Agric Sci 14(2):153–159

    Google Scholar 

  • Hjertqvist M, Johansson A, Svensson N, Abom P, Magnusson C, Olsson M, Andersson Y (2006) Four outbreaks of norovirus gastroenteritis after consuming raspberries, Sweden, June-August 2006. Week Releases 11(36):3038

    Google Scholar 

  • Hopkins DZ, Parisi MA, Dawson PL, Northcutt JK (2020) Surface decontamination of fresh, whole peaches (Prunus persica) using sodium hypochlorite or acidified electrolyzed water solutions. Int J Fruit Sci 21(1):1–11

    Article  Google Scholar 

  • Huang Y, Ye M, Chen H (2013) Inactivation of Escherichia coli O157: H7 and Salmonella spp. in strawberry puree by high hydrostatic pressure with/without subsequent frozen storage. Int J Food Microbiol 160(3):337–343

    Article  PubMed  Google Scholar 

  • Hutton G, Haller L, Bartram J (2007) Global cost-benefit analysis of water supply and sanitation interventions. J Water Health 5(4):481–502

    Article  PubMed  Google Scholar 

  • Jemni M, Gómez PA, Souza M, Chaira N, Ferchichi A, Otón M, Artés F (2014) Combined effect of UV-C, ozone and electrolyzed water for keeping overall quality of date palm. LWT Food Sci Technol 59(2):649–655

    Article  CAS  Google Scholar 

  • Jin TZ, Yu Y, Gurtler JB (2017) Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT 77:517–524

    Article  CAS  Google Scholar 

  • Kaavya R, Pandiselvam R, Abdullah S, Sruthi NU, Jayanath Y, Ashokkumar C, Ramesh SV (2021) Emerging non-thermal technologies for decontamination of Salmonella in food. Trends Food Sci Technol 112:400–418

    Article  CAS  Google Scholar 

  • Kang J-W, Kang D-H (2017) Antimicrobial efficacy of vacuum impregnation washing with malic acid applied to whole paprika, carrots, king oyster mushrooms and muskmelons. Food Control 82:126–135

    Article  CAS  Google Scholar 

  • Kaye VSY, McWatters KH, Beuchat LR (2005) Efficacy of gaseous chlorine dioxide as a sanitizer for killing salmonella, yeasts, and molds on blueberries, strawberries, and raspberries. J Food Prot 68(6):1165–1175

    Article  Google Scholar 

  • Khanashyam AC, Udompijitkul P (2019) Development of germinant mixtures and inactivation of adhered Clostridium sporogenes spores on food contact surfaces. Suranaree J Sci Technol 27(2):1–3

    Google Scholar 

  • Khanashyam AC, Shanker MA, Kothakota A, Mahanti NK, Pandiselvam R (2021) Ozone applications in milk and meat industry. Ozone Sci Eng 2021:1–16

    Google Scholar 

  • Kim J-G, Yousef AE, Khadre MA (2003) Ozone and its current and future application in the food industry. Adv Food Nutr Res 45:167–218

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Pitts B, Stewart PS, Camper A, Yoon J (2008) Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob Agents Chemother 52(4):1446–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SA, Park SH, Knueven C, Basel R, Ricke SC (2018) A decontamination approach using a combination of bisulfate of soda and peracetic acid against Listeria innocua inoculated on whole apples. Food Control 84:106–110

    Article  CAS  Google Scholar 

  • Kitis M (2004) Disinfection of wastewater with peracetic acid: a review. Environ Int 30(1):47–55

    Article  CAS  PubMed  Google Scholar 

  • Koseki S, Yoshida K, Isobe S, Itoh K (2004) Efficacy of acidic electrolyzed water for microbial decontamination of cucumbers and strawberries. J Food Prot 67(6):1247–1251

    Article  CAS  PubMed  Google Scholar 

  • Mackey BM, Miles CA, Parsons SE, Seymo DA (1991) Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry. J Gen Microbiol 137(10):2361–2374

    Article  CAS  PubMed  Google Scholar 

  • Lacombe A, Niemira BA, Gurtler JB, Fan X, Sites J, Boyd G, Chen H (2015) Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol 46:479–484

    Article  CAS  PubMed  Google Scholar 

  • Lebovka NI, Praporscic I, Vorobiev E (2004) Combined treatment of apples by pulsed electric fields and by heating at moderate temperature. J Food Eng 65(2):211–217

    Article  Google Scholar 

  • Lee H, Kim JE, Chung MS, Min SC (2015) Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiol 51:74–80

    Article  CAS  PubMed  Google Scholar 

  • Leverentz B, Janisiewicz WJ, Conway WS, Saftner RA, Fuchs Y, Sams CE, Camp M (2000) Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of ‘Gala’ apples. Postharvest Biol Technol 21(1):87–94

    Article  Google Scholar 

  • Liu C, Ma T, Hu W, Tian M, Sun L (2016) Effects of aqueous ozone treatments on microbial load reduction and shelf life extension of fresh-cut apple. Int J Food Sci Technol 51(5):1099–1109

    Article  CAS  Google Scholar 

  • Lynch MF, Tauxe RV, Hedberg CW (2009) The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137(3):307–315

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud BS, Bhagat AR, Linton RH (2007) Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica on strawberries by chlorine dioxide gas. Food Microbiol 24(7-8):736–744

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud BS, Vaidya NA, Corvalan CM, Linton RH (2008) Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Poona on whole cantaloupe by chlorine dioxide gas. Food Microbiol 25(7):857–865

    Article  CAS  PubMed  Google Scholar 

  • Manzocco L, Da Pieve S, Bertolini A, Bartolomeoli I, Maifreni M, Vianello A, Nicoli MC (2011a) Surface decontamination of fresh-cut apple by UV-C light exposure: Effects on structure, colour and sensory properties. Postharvest Biol Technol 61(2-3):165–171

    Article  CAS  Google Scholar 

  • Manzocco L, Da Pieve S, Maifreni M (2011b) Impact of UV-C light on safety and quality of fresh-cut melon. Innov Food Sci Emerg Technol 12(1):13–17

    Article  CAS  Google Scholar 

  • Marszałek K, Mitek M, Skąpska S (2015) The effect of thermal pasteurization and high pressure processing at cold and mild temperatures on the chemical composition, microbial and enzyme activity in strawberry purée. Innov Food Sci Emerg Technol 27:48–56

    Article  Google Scholar 

  • McDonnell G (2014) The use of hydrogen peroxide for disinfection and sterilization applications. In: PATAI’S Chemistry of Functional Groups, pp 1–34

    Google Scholar 

  • Mir S, Siddiqui M, Dar B, Shah M, Wani M, Roohinejad S, Ali A (2020) Promising applications of cold plasma for microbial safety, chemical decontamination and quality enhancement in fruits. J Appl Microbiol 129(3):474–485

    Article  CAS  PubMed  Google Scholar 

  • Mirdehghan SH, Rahemi M, Martínez-Romero D, Guillén F, Valverde JM, Zapata PJ, Valero D (2007) Reduction of pomegranate chilling injury during storage after heat treatment: role of polyamines. Postharvest Biol Technol 44(1):19–25

    Article  CAS  Google Scholar 

  • Mohammed MEA, El-Shafie HA, Sallam AAA (2019) A solar-powered heat system for management of almond moth, Cadra cautella (Lepidoptera: Pyralidae) in stored dates. Postharvest Biol Technol 154:121–128

    Article  Google Scholar 

  • Najafi MBH, Khodaparast MH (2009) Efficacy of ozone to reduce microbial populations in date fruits. Food Control 20(1):27–30

    Article  Google Scholar 

  • Netramai S, Kijchavengkul T, Sakulchuthathip V, Rubino M (2016) Antimicrobial efficacy of gaseous chlorine dioxide against Salmonella enterica Typhimurium on grape tomato (Lycopersicon esculentum). Int J Food Sci Technol 51(10):2225–2232

    Article  CAS  Google Scholar 

  • Niveditha A, Pandiselvam R, Prasath VA, Singh SK, Gul K, Kothakota A (2021) Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods-A review. Food Control 2021:108338

    Article  Google Scholar 

  • Noci F, Riener J, Walkling-Ribeiro M, Cronin D, Morgan D, Lyng J (2008) Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple juice. J Food Eng 85(1):141–146

    Article  Google Scholar 

  • Okull DO, Aborde LF (2004) Activity of electrolyzed oxidizing water against Penicillium expansum in suspension and on wounded apples. Food Microbiol Saf 69(1):1–5

    Google Scholar 

  • Oliveira Elias S, Tombini Decol L, Tondo EC (2018) Foodborne outbreaks in Brazil associated with fruits and vegetables: 2008 through 2014. Food Qual Saf 2(4):173–181

    Article  Google Scholar 

  • Ornelas P, Yahia EM (2004) Effects of prestorage dry and humid hot air treatments on the quality, triglycerides and tocopherol contents in ‘hass’ avocado fruit. J Food Qual 27(2):115–126

    Article  Google Scholar 

  • Pandiselvam R, Sunoj S, Manikantan MR, Kothakota A, Hebbar KB (2017) Application and kinetics of ozone in food preservation. Ozone Sci Eng 39(2):115–126

    Article  CAS  Google Scholar 

  • Pandiselvam R, Subhashini S, Banuu Priya EP, Kothakota A, Ramesh SV, Shahir S (2019) Ozone based food preservation: a promising green technology for enhanced food safety. Ozone Sci Eng 41(1):17–34

    Article  CAS  Google Scholar 

  • Pandiselvam R, Kaavya R, Jayanath Y, Veenuttranon K, Lueprasitsakul P, Divya V, Ramesh SV (2020) Ozone as a novel emerging technology for the dissipation of pesticide residues in foods–a review. Trends Food Sci Technol 97:38–54

    Article  CAS  Google Scholar 

  • Park DL, Rua SM Jr, Acker RF (1991) Direct application of a new hypochlorite sanitizer for reducing bacterial contamination on foods. J Food Prot 54(12):960–965

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Valdramidis V, Cullen P, Frias J, Bourke P (2010) Inactivation of Escherichia coli by ozone treatment of apple juice at different pH levels. Food Microbiol 27(6):835–840

    Article  CAS  PubMed  Google Scholar 

  • Perni S, Liu DW, Shama G, Kong MG (2008) Cold atmospheric plasma decontamination of the pericarps of fruit. J Food Prot 71(2):302–308

    Article  CAS  PubMed  Google Scholar 

  • Petrus RR, Churey JJ, Humiston GA, Cheng RM, Worobo RW (2020) The combined effect of high pressure processing and dimethyl dicarbonate to inactivate foodborne pathogens in apple juice. Braz J Microbiol 51(2):779–785

    Article  CAS  PubMed  Google Scholar 

  • Picouet PA, Landl A, Abadias M, Castellari M, Viñas I (2009) Minimal processing of a Granny Smith apple purée by microwave heating. Innov Food Sci Emerg Technol 10(4):545–550

    Article  CAS  Google Scholar 

  • Puértolas E, López N, Condón S, Álvarez I, Raso J (2010) Potential applications of PEF to improve red wine quality. Trends Food Sci Technol 21(5):247–255

    Article  Google Scholar 

  • Raghunathan R, Pandiselvam R, Kothakota A, Khaneghah AM (2021) The application of emerging non-thermal technologies for the modification of cereal starches. LWT- Food Sci Technol 138:110795

    Article  CAS  Google Scholar 

  • Razali MF, Narayanan S, Hazmi M, Abdul Karim Shah NN, Mustapa Kamal SM, Mohd Fauzi NA, Sulaiman A (2021) Minimal processing for goat milk preservation: effect of high-pressure processing on its quality. J Food Process Preserv 45(7):e15590

    Article  CAS  Google Scholar 

  • Reller ME, Nelson JM, Mølbak K, Ackman DM, Schoonmaker-Bopp DJ, Root TP, Mintz EDJC (2006) A large, multiple-restaurant outbreak of infection with Shigella flexneri serotype 2a traced to tomatoes. Clin Infect Dis 42(2):163–169

    Article  PubMed  Google Scholar 

  • Rodgers SL, Cash JN, Siddiq M, Ryser ET (2004) A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. J Food Prot 67(4):721–731

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Graü MA, Raybaudi-Massilia RM, Soliva-Fortuny RC, Avena-Bustillos RJ, McHugh TH, Martín-Belloso O (2007) Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biol Technol 45(2):254–264

    Article  Google Scholar 

  • Salinas-Roca B, Soliva-Fortuny R, Welti-Chanes J, Martín-Belloso O (2016) Combined effect of pulsed light, edible coating and malic acid dipping to improve fresh-cut mango safety and quality. Food Control 66:190–197

    Article  CAS  Google Scholar 

  • Satoshi F (2006) Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci 11(4):147–157

    Article  Google Scholar 

  • Sivaranjani S, Prasath VA, Pandiselvam R, Kothakota A, Khaneghah AM (2021) Recent advances in applications of ozone in the cereal industry. LWT- Food Sci Technol 2021:111412

    Article  Google Scholar 

  • Shiroodi SG, Ovissipour M (2018) Electrolyzed water application in fresh produce sanitation. In: Postharvest disinfection of fruits and vegetables. Springer, New York, pp 67–89

    Chapter  Google Scholar 

  • Siroli L, Patrignani F, Serrazanetti DI, Tabanelli G, Montanari C, Tappi S, Lanciotti R (2014) Efficacy of natural antimicrobials to prolong the shelf-life of minimally processed apples packaged in modified atmosphere. Food Control 46:403–411

    Article  CAS  Google Scholar 

  • Sivapalasingam S, Barrett E, Kimura A, Van Duyne S, De Witt W, Ying M, Shillam P (2003) A multistate outbreak of Salmonella enterica Serotype Newport infection linked to mango consumption: impact of water-dip disinfestation technology. Clin Infect Dis 37(12):1585–1590

    Article  PubMed  Google Scholar 

  • Smilanick JL, Mansour MF, Gabler FM, Sorenson D (2008) Control of citrus postharvest green mold and sour rot by potassium sorbate combined with heat and fungicides. Postharvest Biol Technol 47(2):226–238

    Article  CAS  Google Scholar 

  • Steenstrup LD, Floros JD (2004) Inactivation of E. coli 0157: H7 in apple cider by ozone at various temperatures and concentrations. J Food Process Preserv 28(2):103–116

    Article  CAS  Google Scholar 

  • Sujayasree OJ, Chaitanya AK, Bhoite R, Pandiselvam R, Kothakota A, Gavahian M, Mousavi Khaneghah A (2021) Ozone: an advanced oxidation technology to enhance sustainable food consumption through mycotoxin degradation. Ozone Sci Eng 2021:1–21

    Google Scholar 

  • Svoboda A, Shaw A, Dzubak J, Mendonca A, Wilson L, Nair A (2016) Effectiveness of broad-spectrum chemical produce sanitizers against foodborne pathogens as in vitro planktonic cells and on the surface of whole cantaloupes and watermelons. J Food Prot 79(4):524–530

    Article  CAS  PubMed  Google Scholar 

  • Syamaladevi RM, Adhikari A, Lupien SL, Dugan F, Bhunia K, Dhingra A, Sablani SS (2015) Ultraviolet-C light inactivation of Penicillium expansum on fruit surfaces. Food Control 50:297–303

    Article  CAS  Google Scholar 

  • Tang D, Lin Q, Lin J, Wang D, Liu C, Wu W, Chen K (2017) Effects of combined heat and preservative treatment on storability of Ponkan fruit (Citrus reticulataBlanco cv. Ponkan) during postharvest storage. J Food Qual 2017:1–7

    CAS  Google Scholar 

  • Tirawat D, Kunimoto H, Noma S, Igura N, Shimoda M (2013) Comparison of decontamination efficacy between the rapid hygrothermal pasteurization and sodium hypochlorite treatments. Food Nutr Sci 4(6):636–642

    CAS  Google Scholar 

  • Tiwari B, O’Donnell C, Muthukumarappan K, Cullen P (2009) Anthocyanin and colour degradation in ozone treated blackberry juice. Innov Food Sci Emerg Technol 10(1):70–75

    Article  CAS  Google Scholar 

  • Tiwari BK, Muthukumarappan K, O’Donnell CP, Cullen P (2008) Kinetics of freshly squeezed orange juice quality changes during ozone processing. J Agric Food Chem 56(15):6416–6422

    Article  CAS  PubMed  Google Scholar 

  • Tsuchido T, Katsui N, Takeuchi A, Takano M, Shibasaki I (1985) Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Appl Environ Microbiol 50(2):298–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ukuku DO (2004) Effect of hydrogen peroxide treatment on microbial quality and appearance of whole and fresh-cut melons contaminated with Salmonella spp. Int J Food Microbiol 95(2):137–146

    Article  CAS  PubMed  Google Scholar 

  • Van de Velde F, Vaccari MC, Piagentini AM, Pirovani ME (2016) Optimization of strawberry disinfection by fogging of a mixture of peracetic acid and hydrogen peroxide based on microbial reduction, color and phytochemicals retention. Food Sci Technol Int 22(6):485–495

    Article  PubMed  Google Scholar 

  • Vardar C, Ilhan K, Karabulut OA (2012) The application of various disinfectants by fogging for decreasing postharvest diseases of strawberry. Postharvest Biol Technol 66:30–34

    Article  CAS  Google Scholar 

  • Walter EH, Nascimento MS, Kuaye AY (2009) Efficacy of sodium hypochlorite and peracetic acid in sanitizing green coconuts. Lett Appl Microbiol 49(3):366–371

    Article  CAS  PubMed  Google Scholar 

  • Weltmann KD, Kindel E, von Woedtke T, Hähnel M, Stieber M, Brandenburg R (2010) Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl Chem 82(6):1223–1237

    Article  CAS  Google Scholar 

  • Wen H-W, Chung H-P, Chou F-I, Lin I-H, Hsieh P-C (2006) Effect of gamma irradiation on microbial decontamination, and chemical and sensory characteristic of lycium fruit. Radiat Phys Chem 75(5):596–603

    Article  CAS  Google Scholar 

  • Whangchai K, Saengnil K, Singkamanee C, Uthaibutra A (2010) Effect of electrolyzed oxidizing water and continuous ozone exposure on the control of Penicillium digitatum on tangerine cv. ‘Sai Nam Pung’ during storage. J Crop Protect 29(4):386–389

    Article  CAS  Google Scholar 

  • Wszelaki A, Mitcham EJPB (2003) Effect of combinations of hot water dips, biological control and controlled atmospheres for control of gray mold on harvested strawberries. Postharvest Biol Technol 27(3):255–264

    Article  CAS  Google Scholar 

  • Xiuxiu S, Bai J, Ference C, Wang Z, Zhang Y, Narciso J, Zhou K (2014) Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries. J Food Prot 77(7):1127–1132

    Article  Google Scholar 

  • Yun J, Yan R, Fan X, Gurtler J, Phillips J (2013) Fate of E. coli O157: H7, Salmonella spp. and potential surrogate bacteria on apricot fruit, following exposure to UV-C light. Int J Food Microbiol 166(3):356–363

    Article  PubMed  Google Scholar 

  • Zhang H, Zheng X, Wang L, Li S, Liu R (2007) Effect of yeast antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries. J Food Eng 78(1):281–287

    Article  CAS  Google Scholar 

  • Zhang YI, Gao BEI, Zhang M, Shi J, Xu Y (2010) Pulsed electric field processing effects on physicochemical properties, flavor compounds and microorganisms of longan juice. J Food Process Preserv 34(6):1121–1138

    Article  CAS  Google Scholar 

  • Zoellner C, Aguayo-Acosta A, Siddiqui MW, Dávila-Aviña JE (2018) Peracetic acid in disinfection of fruits and vegetables. In: Postharvest disinfection of fruits and vegetables. Springer, New York, pp 53–66

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanashyam, A.C., Shanker, M.A., Kothakota, A., Pandiselvam, R. (2022). Decontamination of Fruits. In: Shah, M.A., Mir, S.A. (eds) Microbial Decontamination of Food. Springer, Singapore. https://doi.org/10.1007/978-981-19-5114-5_2

Download citation

Publish with us

Policies and ethics